Thesis icon

Thesis

Single molecule studies of seven transmembrane domain proteins

Abstract:

This work aimed at studying biophysical properties of two membrane proteins, one of potential nanotechnological use, bacteriorhodopsin, and one potential drug target, the NTS1 neurotensin receptor, at the single molecule scale.

Bacteriorhodopsin (BR) is the only protein in the purple membrane (PM) of the halophilic organism Halobacterium salinarium. It is a light-driven proton pump converting light into a transmembrane proton gradient through isomerization of its retinal chromophore. Its stability, as well as its photoactivity remaining in dry protein layers, has made BR an attractive material for biomolecular devices. Numerous studies have been published on this topic; however, they have all used BR within the PM, on relatively large (µm-wide) surfaces.

Here, conducting-probe atomic force microscopy (C-AFM) analysis was performed after removing most of the membrane lipids. For the first time, it was shown that the molecular conductance of BR can be reversibly photoswitched with predictable wavelength sensitivity. Intimate and robust coupling to gold electrodes was achieved by using a strategically engineered cysteine which, combined with partial delipidation, generated protein trimers homogenously orientated on the surface. Numerous controls using biophysical (SPR, ellipsometry, Kelvin-probe AFM) and chemical (photocurrent, cyclic voltammetry) techniques confirmed the wavelength specificity of the photoswitch, the anchoring role of the mutation and the homogenous orientation of the protein on the gold surface.

Neurotensin is a brain and gastrointestinal 13 amino acid peptide acting as a neuromodulator in the central nervous system and as a hormone in the periphery. Its wide range of biological activities is primarily mediated through its binding to the neurotensin type 1 receptor (NTS1). NTS1 expressed in E.coli was purified and inserted into 100 nm brain polar lipid liposomes in a conformation which retained its ligand-binding capabilities. Initial AFM characterisation was performed as a prelude for ligand-receptor interaction studies, including high resolution imaging, force spectroscopy and solid state NMR approaches.

Actions


Access Document


Authors


More by this author
Institution:
University of Oxford
Division:
MSD
Department:
Biochemistry
Role:
Author

Contributors

Division:
MSD
Department:
Biochemistry
Role:
Supervisor


Publication date:
2011
Type of award:
DPhil
Level of award:
Doctoral
Awarding institution:
Oxford University, UK


Language:
English
Keywords:
Subjects:
UUID:
uuid:ff7ae71d-5481-4523-812b-2128fe32f5fc
Local pid:
ora:6415
Deposit date:
2012-08-06

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP