Thesis icon

Thesis

Systems of forms in many variables

Abstract:

We consider systems of polynomial equations and inequalities to be solved in integers. By applying the circle method, when the number of variables is large and the system is geometrically well-behaved we give an asymptotic estimate for the number of solutions of bounded size.

In the case of R homogeneous equations having the same degree d, a classic theorem of Birch provides such an estimate provided the number of variables is R(R+1)(d-1)2d-1+R or greater and the system is nonsingular. In many cases this conclusion has been improved, but except in the case of diagonal equations the number of variables needed has always grown quadratically in R.

We give a result requiring only d2dR+R variables, obtaining linear growth in R. When d = 2 or 3 we require only that the system be nonsingular; when d<4 we require that the coefficients of the equations belong to a certain explicit Zariski open set. These conditions are satisfied for typical systems of equations, and can in principle be checked algorithmically for any particular system.

We also give an asymptotic estimate for the number of solutions to R polynomial inequalities of degree d with real coefficients, in the same number of variables and satisfying the same geometric conditions as in our work on equations. Previously one needed the number of variables to grow super-exponentially in the degree d in order to show that a nontrivial solution exists.

Actions


Access Document


Files:

Authors


More by this author
Division:
MPLS
Department:
Mathematical Institute
Department:
Georg-August-Universität Göttingen
Role:
Author

Contributors

Department:
University of Oxford
Role:
Supervisor


Type of award:
DPhil
Level of award:
Doctoral
Awarding institution:
University of Oxford


Language:
English
Keywords:
Subjects:
UUID:
uuid:a9932e90-4784-466a-a694-d387c1228533
Deposit date:
2018-09-20

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP