Thesis
Quantum Hall Edges Beyond Luttinger Liquid
- Abstract:
-
We consider a series of problems regarding quantum Hall edges, focusing on both dynamics and the mathematical structure of edge states.
We begin in Chapter 3 with a limiting case of the Laughlin state placed in a very steep confining potential, but which is weak compared to the interactions. We find that the eigenstates have a Jack polynomial structure and an energy spectrum which is extremely different from the well-known Luttinger liquid edge.
In Chapter 5 we analyse the inner products of edge state wavefunctions, using an effective description given by a large-N expansion ansatz proposed by J. Dubail, N. Read and E. Rezayi, PRB 86, 245310 (2012). As noted by these authors, the terms in this ansatz can be constrained using symmetry, a procedure we perform to high orders. We then check the conjecture by calculating overlaps exactly for small system sizes and comparing the numerics with our high-order expansion to find excellent agreement.
Finally, Chapter 6 considers the behaviour of quantum Hall edges close to the Luttinger liquid fixed point that occurs in the low energy, large system limit. We construct effective Hamiltonians using a local field theory description and then consider the effect of bulk symmetries on this edge. The symmetry analysis produces remarkable simplifications which allow for very accurate descriptions of the low-energy edge physics even relatively far away from the Luttinger liquid fixed point.
Actions
- Type of award:
- DPhil
- Level of award:
- Doctoral
- Awarding institution:
- University of Oxford
- Language:
-
English
- Keywords:
- Subjects:
- UUID:
-
uuid:e4a1304e-93bc-4a88-92c1-072908cf19ae
- Deposit date:
-
2018-08-15
Terms of use
- Copyright holder:
- Fern, R
- Copyright date:
- 2018
If you are the owner of this record, you can report an update to it here: Report update to this record