Thesis
The poisson process in quantum stochastic calculus
- Abstract:
-
Given a compensated Poisson process $(X_t)_{t \geq 0}$ based on $(\Omega, \mathcal{F}, \mathbb{P})$, the Wiener-Poisson isomorphism $\mathcal{W} : \mathfrak{F}_+(L^2 (\mathbb{R}_+)) \to L^2 (\Omega, \mathcal{F}, \mathbb{P})$ is constructed. We restrict the isomorphism to $\mathfrak{F}_+(L^2 [0,1])$ and prove some novel properties of the Poisson exponentials $\mathcal{E}(f) := \mathcal{W}(e(f))$. A new proof of the result $\Lambda_t + A_t + A^{\dagger}_t = \mathcal{W}^{-1}\widehat{X_t} \mathca...
Expand abstract
Actions
Authors
- Publisher:
- University of Oxford;Mathematical Institute
- Publication date:
- 2002
- Type of award:
- DPhil
- Level of award:
- Doctoral
- UUID:
-
uuid:d093236c-a3a2-4c70-afd5-a8b61ccbd2d2
- Local pid:
-
oai:eprints.maths.ox.ac.uk:46
- Deposit date:
-
2011-05-19
Terms of use
- Copyright holder:
- Pathmanathan, S
- Copyright date:
- 2002
If you are the owner of this record, you can report an update to it here: Report update to this record