Thesis
Regularity and uniqueness in the calculus of variations
- Abstract:
-
This thesis is about regularity and uniqueness of minimizers of integral functionals of the form
F(u) := ∫Ω F(∇u(x)) dx;
where F∈C2(RNn) is a strongly quasiconvex integrand with p-growth, Ω⊆RnRn is an open bounded domain and u∈W1,pg(Ω,RN) for some boundary datum g∈C1,α(‾Ω, RN).
The first contribution of this work is a full regularity result, up to the boundary, for global minimizers of F provided that the boundary condition g satisfies that ΙΙ∇gΙΙLP < ε for some ε > 0 depending only on n;N, the parameters given by the strong quasiconvexity and p-growth conditions and, most importantly, on an arbitrary but fixed constant M > 0 for which we require that ΙΙ∇gΙΙO,α < M. Furthermore, when the domain Ω is star-shaped, we extend the regularity result to the case of W1,p-local minimizers.
On the other hand, for the case of global minimizers we exploit the compactness provided by the aforementioned regularity result to establish the main contribution of this thesis: we prove that, under essentially the same smallness assumptions over the boundary condition g that we mentioned above, the minimizer of F in W1,pg is unique. This result appears in contrast to the non-uniqueness examples previously given by Spadaro [Spa09], for which the boundary conditions are required to be suitably large.
Actions
Authors
- Funding agency for:
- Campos Cordero, J
- Publication date:
- 2014
- Type of award:
- DPhil
- Level of award:
- Doctoral
- Awarding institution:
- Oxford University, UK
- Language:
-
English
- Keywords:
- Subjects:
- UUID:
-
uuid:81e69dac-5ba2-4dc3-85bc-5d9017286f13
- Local pid:
-
ora:10622
- Deposit date:
-
2015-03-18
Terms of use
- Copyright holder:
- Campos Cordero, J
- Copyright date:
- 2014
If you are the owner of this record, you can report an update to it here: Report update to this record