Journal article icon

Journal article

A generalized approach for producing, quantifying, and validating citizen science data from wildlife images

Abstract:
Citizen science has the potential to expand the scope and scale of research in ecology and conservation, but many professional researchers remain skeptical of data produced by nonexperts. We devised an approach for producing accurate, reliable data from untrained, nonexpert volunteers. On the citizen science website www.snapshotserengeti.org, more than 28,000 volunteers classified 1.51 million images taken in a large-scale camera-trap survey in Serengeti National Park, Tanzania. Each image was circulated to, on average, 27 volunteers, and their classifications were aggregated using a simple plurality algorithm. We validated the aggregated answers against a data set of 3829 images verified by experts and calculated 3 certainty metrics—level of agreement among classifications (evenness), fraction of classifications supporting the aggregated answer (fraction support), and fraction of classifiers who reported “nothing here” for an image that was ultimately classified as containing an animal (fraction blank)—to measure confidence that an aggregated answer was correct. Overall, aggregated volunteer answers agreed with the expert-verified data on 98% of images, but accuracy differed by species commonness such that rare species had higher rates of false positives and false negatives. Easily calculated analysis of variance and post-hoc Tukey tests indicated that the certainty metrics were significant indicators of whether each image was correctly classified or classifiable. Thus, the certainty metrics can be used to identify images for expert review. Bootstrapping analyses further indicated that 90% of images were correctly classified with just 5 volunteers per image. Species classifications based on the plurality vote of multiple citizen scientists can provide a reliable foundation for large-scale monitoring of African wildlife.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.1111/cobi.12695

Authors


More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Sub department:
Astrophysics
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Sub department:
Astrophysics
Role:
Author


More from this funder
Funding agency for:
Lintott, C
Grant:
Global Impact Award
Global Impact Award
More from this funder
Grant:
Ulysses S. Seal Conservation Grant Program
More from this funder
Grant:
Office of International Programs
Thesis Research Grants


Publisher:
Wiley
Journal:
Conservation biology : the journal of the Society for Conservation Biology More from this journal
Volume:
30
Issue:
3
Pages:
520-531
Publication date:
2016-04-25
Acceptance date:
2015-08-19
DOI:
EISSN:
1523-1739
ISSN:
0888-8892


Language:
English
Keywords:
Pubs id:
pubs:619688
UUID:
uuid:6bc243cb-bb0b-4691-9258-7d48aea53f52
Local pid:
pubs:619688
Source identifiers:
619688
Deposit date:
2016-05-09

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP