Thesis
Towards storage and retrieval of non-classical light in a broadband quantum memory - An investigation of free-space and cavity Raman memories
- Abstract:
-
Photonic quantum information processing has emerged as a powerful platform for realising quantum-enhanced technologies. In order to be scalable, many of these technologies depend on the availability of a suitable quantum memory for the coherent storage and on-demand retrieval of photonic quantum states.
In this thesis, I investigate broadband light storage in a room-temperature Raman memory, implemented both in free space and, for the first time, inside a low-finesse optical cavity designed for low-noise operation.
The ability of the Raman memory to preserve phase coherence was tested by storing coherent polarisation states in two spatially separate atomic ensembles. Polarisation storage with a fidelity of up to 97 ± 1% was demonstrated by performing full process tomography on the system.
The Raman memory was then interfaced for the first time with a spontaneous parametric downconversion (SPDC) source of heralded, GHz-bandwidth single photons. The memory performance was characterised by measuring the second-order autocorrelation of the retrieved fields. While the SPDC input photon statistics showed a clear influence on the statistics of the retrieved field, four-wave mixing (FWM) noise, stimulated by spontaneous Raman scattering, prevented the preservation of non-classical photon statistics during read-out.
Suppressing this source of noise represents the last remaining challenge for realising a broadband single-photon Raman memory suitable for quantum information applications. To this end, I demonstrate a novel cavity implementation of the Raman memory which reduces the FWM contribution relative to the signal field by re-distributing the density of states into which the noise photons can be scattered. Cavity-enhanced memory operation was investigated using weak coherent input states, showing a significant improvement of the signal-to-noise ratio compared to the free-space memory implementation. This proof-of-principle demonstration suggests that cavity Raman memories may offer a practical route towards low-noise, high-bandwidth quantum storage at room temperature.
Actions
- Type of award:
- DPhil
- Level of award:
- Doctoral
- Awarding institution:
- University of Oxford
- Language:
-
English
- Keywords:
- Subjects:
- UUID:
-
uuid:6681110d-ccdb-4960-93be-cf1fbac4e0ec
- Deposit date:
-
2015-12-02
Terms of use
- Copyright holder:
- Champion, T
- Copyright date:
- 2015
If you are the owner of this record, you can report an update to it here: Report update to this record