Journal article icon

Journal article

Turing-Hopf patterns on growing domains: the torus and the sphere

Abstract:
This paper deals with the study of spatial and spatio-temporal patterns in the reaction-diffusion FitzHugh-Nagumo model on growing curved domains. This is carried out on two exemplar cases: a torus and a sphere. We compute bifurcation boundaries for the homogeneous steady state when the homogeneous system is monostable. We exhibit Turing and Turing-Hopf bifurcations, as well as additional patterning outside of these bifurcation regimes due to the multistability of patterned states. We consider static and growing domains, where the growth is slow, isotropic, and exponential in time, allowing for a simple analytical calculation of these bifurcations in terms of model parameters. Numerical simulations allow us to discuss the role played by the growth and the curvature of the domains on the pattern selection on the torus and the sphere. We demonstrate parameter regimes where the linear theory can successfully predict the kind of pattern (homogeneous and heterogeneous oscillations and stationary spatial patterns) but not their detailed nonlinear structure. We also find parameter regimes where the linear theory fails, such as Hopf regimes which give rise to spatial patterning (depending on geometric details), where we suspect that multistability plays a key role in the departure from homogeneity. Finally we also demonstrate effects due to the evolution of nonuniform patterns under growth, suggesting important roles for growth in reaction-diffusion systems beyond modifying instability regimes.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.1016/j.jtbi.2018.09.028

Authors


More by this author
Institution:
University of Oxford
Division:
MPLS Division
Department:
Mathematical Institute
Oxford college:
St Anne's College
Role:
Author
ORCID:
0000-0001-9638-7278


Publisher:
Elsevier
Journal:
Journal of Theoretical Biology More from this journal
Volume:
481
Pages:
136-150
Publication date:
2018-09-25
Acceptance date:
2018-09-24
DOI:
EISSN:
1095-8541
ISSN:
0022-5193
Pmid:
30266461


Language:
English
Keywords:
Pubs id:
pubs:922482
UUID:
uuid:5183a493-6f4c-4475-b801-10d86c8a55f7
Local pid:
pubs:922482
Source identifiers:
922482
Deposit date:
2018-10-19

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP