Thesis
Operators on banach spaces of Bourgain-Delbaen type
- Abstract:
 - 
		
			
The research in this thesis was initially motivated by an outstanding problem posed by Argyros and Haydon. They used a generalised version of the Bourgain-Delbaen construction to construct a Banach space $XK$ for which the only bounded linear operators on $XK$ are compact perturbations of (scalar multiples of) the identity; we say that a space with this property has very few operators. The space $XK$ possesses a number of additional interesting properties, most notably, it has $ell_1$ dual. Since $ell_1$ possesses the Schur property, weakly compact and norm compact operators on $XK$ coincide. Combined with the other properties of the Argyros-Haydon space, it is tempting to conjecture that such a space must necessarily have very few operators. Curiously however, the proof that $XK$ has very few operators made no use of the Schur property of $ell_1$. We therefore arrive at the following question (originally posed in cite{AH}): must a HI, $mathcal{L}_{infty}$, $ell_1$ predual with few operators (every operator is a strictly singular perturbation of $lambda I$) necessarily have very few operators?
We begin by giving a detailed exposition of the original Bourgain-Delbaen construction and the generalised construction due to Argyros and Haydon. We show how these two constructions are related, and as a corollary, are able to prove that there exists some $delta > 0$ and an uncountable set of isometries on the original Bourgain-Delbaen spaces which are pairwise distance $delta$ apart.
We subsequently extend these ideas to obtain our main results. We construct new Banach spaces of Bourgain-Delbaen type, all of which have $ell_1$ dual. The first class of spaces are HI and possess few, but not very few operators. We thus have a negative solution to the Argyros-Haydon question. We remark that all these spaces have finite dimensional Calkin algebra, and we investigate the corollaries of this result. We also construct a space with $ell_1$ Calkin algebra and show that whilst this space is still of Bourgain-Delbaen type with $ell_1$ dual, it behaves somewhat differently to the first class of spaces.
Finally, we briefly consider shift-invariant $ell_1$ preduals, and hint at how one might use the Bourgain-Delbaen construction to produce new, exotic examples.
 
Actions
- Funding agency for:
 - Tarbard, M
 
- Publication date:
 - 2013
 - DOI:
 - Type of award:
 - DPhil
 - Level of award:
 - Doctoral
 - Awarding institution:
 - University of Oxford
 
- Language:
 - 
                    English
 - Keywords:
 - Subjects:
 - UUID:
 - 
                  uuid:4be220be-9347-48a1-85e6-eb0a30a8d51a
 - Local pid:
 - 
                    ora:7453
 - Deposit date:
 - 
                    2013-10-15
 
Terms of use
- Copyright holder:
 - Tarbard, M
 - Copyright date:
 - 2013
 
If you are the owner of this record, you can report an update to it here: Report update to this record