Internet publication
Collateral impacts of pandemic COVID-19 drive the nosocomial spread of antibiotic resistance
- Abstract:
-
Circulation of multidrug-resistant bacteria (MRB) in healthcare facilities is a major public health problem. These settings have been greatly impacted by the COVID-19 pandemic, notably due to surges in COVID-19 caseloads and the implementation of infection control measures. Yet collateral impacts of pandemic COVID-19 on MRB epidemiology remain poorly understood. Here, we present a dynamic transmission model in which SARS-CoV-2 and MRB co-circulate among patients and staff in a hospital population in an early pandemic context. Responses to SARS-CoV-2 outbreaks are captured mechanistically, reflecting impacts on factors relevant for MRB transmission, including contact behaviour, hand hygiene compliance, antibiotic prescribing and population structure. In a first set of simulations, broad parameter ranges are accounted for, representative of diverse bacterial species and hospital settings. On average, COVID-19 control measures coincide with MRB prevention, including fewer incident cases and fewer cumulative person-days of patient MRB colonization. However, surges in COVID-19 caseloads favour MRB transmission and lead to increased rates of antibiotic resistance, especially in the absence of concomitant control measures. In a second set of simulations, methicillin-resistant Staphylococcus aureus and extended-spectrum beta-lactamase-producing Escherichia coli are simulated in specific hospital wards and pandemic response scenarios. Antibiotic resistance dynamics are highly context-specific in these cases, and SARS-CoV-2 outbreaks significantly impact bacterial epidemiology only in facilities with high underlying risk of bacterial transmission. Crucially, antibiotic resistance burden is reduced in facilities with timelier, more effective implementation of COVID-19 control measures. This highlights the control of antibiotic resistance as an important collateral benefit of robust pandemic preparedness.
Significance Statement Impacts of COVID-19 on the spread of antibiotic resistance are poorly understood. Here, an epidemiological model accounting for the simultaneous spread of SARS-CoV-2 and antibiotic-resistant bacteria is presented. The model is tailored to healthcare settings during the first wave of the COVID-19 pandemic, and accounts for hand hygiene, inter-individual contact behaviour, and other factors relevant for pathogen spread. Simulations demonstrate that public health policies enacted to slow the spread of COVID-19 also tend to limit bacterial transmission. However, surges in COVID-19 cases simultaneously select for higher rates of antibiotic resistance. Selection for resistance is thus mitigated by prompt implementation of effective COVID-19 prevention policies. This highlights the control of antibiotic resistance as an important collateral benefit of pandemic preparedness.
- Publication status:
- Published
- Peer review status:
- Not peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Pre-print, pdf, 1.7MB, Terms of use)
-
(Supplementary materials, doc, 8.0MB, Terms of use)
-
- Publisher copy:
- 10.1101/2022.08.15.503946
Authors
- Host title:
- bioRxiv
- Publication date:
- 2022-08-16
- DOI:
- Language:
-
English
- Keywords:
- Pubs id:
-
1331741
- Local pid:
-
pubs:1331741
- Deposit date:
-
2023-03-27
Terms of use
- Copyright holder:
- Smith et al.
- Copyright date:
- 2022
- Rights statement:
- The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
If you are the owner of this record, you can report an update to it here: Report update to this record