Journal article
Faster exponential-time algorithms for approximately counting independent sets
- Abstract:
- Counting the independent sets of a graph is a classical #P-complete problem, even in the bipartite case. We give an exponential-time approximation scheme for this problem which is faster than the best known algorithm for the exact problem. The running time of our algorithm on general graphs with error tolerance ε is at most O(20.2680n) times a polynomial in 1/ε. On bipartite graphs, the exponential term in the running time is improved to O(20.2372n). Our methods combine techniques from exact exponential algorithms with techniques from approximate counting. Along the way we generalise (to the multivariate case) the FPTAS of Sinclair, Srivastava, Stefankoviˇc and Yin for approximating the hard- ˇ core partition function on graphs with bounded connective constant. Also, we obtain an FPTAS for counting independent sets on graphs with no vertices with degree at least 6 whose neighbours’ degrees sum to 27 or more. By a result of Sly, there is no FPTAS that applies to all graphs with maximum degree 6 unless P = NP.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Accepted manuscript, pdf, 646.6KB, Terms of use)
-
- Publisher copy:
- 10.1016/j.tcs.2021.09.009
Authors
- Publisher:
- Elsevier
- Journal:
- Theoretical Computer Science More from this journal
- Volume:
- 892
- Pages:
- 48-84
- Publication date:
- 2021-09-16
- Acceptance date:
- 2021-09-02
- DOI:
- ISSN:
-
0304-3975
- Language:
-
English
- Keywords:
- Pubs id:
-
1193874
- Local pid:
-
pubs:1193874
- Deposit date:
-
2021-09-03
Terms of use
- Copyright holder:
- Elsevier B.V.
- Copyright date:
- 2021
- Rights statement:
- © 2021 Elsevier B.V. All rights reserved.
- Notes:
- This is the accepted manuscript version of the article. The final version is available online from Elsevier at: https://doi.org/10.1016/j.tcs.2021.09.009
If you are the owner of this record, you can report an update to it here: Report update to this record