Journal article
Comparing probabilistic forecasts of the daily minimum and maximum temperature
- Abstract:
- Understanding changes in the frequency, severity, and seasonality of daily temperature extremes is important for public policy decisions regarding heat waves and cold snaps. A heat wave is sometimes defined in terms of both the daily minimum and maximum temperature, which necessitates the generation of forecasts of their joint distribution. In this paper, we develop time series models with the aim of providing insight and producing forecasts of the joint distribution that can challenge the accuracy of forecasts based on ensemble predictions from a numerical weather prediction model. We use ensemble model output statistics to recalibrate the raw ensemble predictions for the marginal distributions, with ensemble copula coupling used to capture the dependency between the marginal distributions. In terms of time series modelling, we consider a bivariate VARMA-MGARCH model. We use daily Spanish data recorded over a 65-year period, and find that, for the 5-year out-of-sample period, the recalibrated ensemble predictions outperform the time series models in terms of forecast accuracy.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Accepted manuscript, pdf, 741.5KB, Terms of use)
-
- Publisher copy:
- 10.1016/j.ijforecast.2021.05.007
Authors
- Publisher:
- Elsevier
- Journal:
- International Journal of Forecasting More from this journal
- Volume:
- 38
- Issue:
- 1
- Pages:
- 267-281
- Publication date:
- 2021-07-03
- Acceptance date:
- 2021-05-13
- DOI:
- ISSN:
-
0169-2070
- Language:
-
English
- Keywords:
- Pubs id:
-
1176653
- Local pid:
-
pubs:1176653
- Deposit date:
-
2021-05-17
Terms of use
- Copyright holder:
- Elsevier B.V.
- Copyright date:
- 2021
- Rights statement:
- © 2021 Published by Elsevier B.V. on behalf of International Institute of Forecasters.
- Notes:
-
This is the accepted manuscript version of the article. The final version is available from Elsevier at https://doi.org/10.1016/j.ijforecast.2021.05.007
If you are the owner of this record, you can report an update to it here: Report update to this record