Thesis icon

Thesis

Plasmodium falciparum population genetics in northern Ghana

Abstract:

The main thrust of this thesis was to characterize P.falciparum genetic diversity in northern Ghana. To do this, I used simple techniques to purify P. falciparum DNA from clinical samples across a rural setting for whole-genome sequencing. The goal was to provide a framework for exploring host-parasite genetic interactions. Utilizing Illumina deep sequencing data for 277 isolates I analyzed P. falciparum genetic diversity and described within-host diversity across this area.

I observed random mating (ie no population structure) in the local parasite population, and a high genetic diversity indicative of high out-crossing. Moreover, when I aggregated my data with similar published data from Burkina Faso and Mali (sites ≈500km apart), no population structure was evident. In contrast, sites sampled in Cambodia and Thailand (≈ 800km apart) were found to have greater population structure and high potential for inbreeding. This may be driven by differences in transmission intensity between the sites sampled in West Africa and southeast Asia.

To demonstrate the utility of deep sequencing data, I focused on the genomic regions of pfdhfr, pfdhps and pfcrt, known to be under antimalarial drug selection. I surveyed the full diversity of point mutations already characterized in these genes and discovered previously unknown variants. However, in order to provide a means to follow up on new variants or interesting candidate regions in large clinical samples with limited parasite DNA, I assessed the Sequenom iPLEX platform for high-throughput genotyping of P. falciparum polymorphisms. This necessitated developing a method appropriate for assigning genotypes in haploid genome mixtures common in natural infections. Finally, I used this method to type host and parasite markers in a case-control sample set from this region for exploring host-parasite genetic interactions. I found that children who have the sickle-cell trait and carry parasites that have pfdhfr resistant alleles lose their protection against severe malaria as compared to children who have normal haemoglobin and are infected with parasites with these resistant alleles.

Actions


Access Document


Files:

Authors


More by this author
Institution:
University of Oxford
Division:
MSD
Oxford college:
Wolfson College
Role:
Author

Contributors

Division:
MSD
Role:
Supervisor
Division:
MSD
Role:
Supervisor


Publication date:
2012
DOI:
Type of award:
DPhil
Level of award:
Doctoral
Awarding institution:
University of Oxford


Language:
English
Keywords:
Subjects:
UUID:
uuid:023a6b97-5a30-4a66-bcad-0d85271062fd
Local pid:
ora:7337
Deposit date:
2013-09-20

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP