Journal article
Mormyrid fish as models for investigating sensory-motor integration: a behavioural perspective
- Abstract:
-
Animals possess senses which gather information from their environment. They can tune into important aspects of this information and decide on the most appropriate response, requiring coordination of their sensory and motor systems. This interaction is bidirectional. Animals can actively shape their perception with self-driven motion, altering sensory flow to maximise the environmental information they are able to extract. Mormyrid fish are excellent candidates for studying sensory-motor interactions, because they possess a unique sensory system (the active electric sense) and exhibit notable behaviours that seem to be associated with electrosensing. This review will take a behavioural approach to unpicking this relationship, using active electrolocation as an example where body movements and sensing capabilities are highly related and can be assessed in tandem. Active electrolocation is the process where individuals will generate and detect low-voltage electric fields to locate and recognise nearby objects. We will focus on research in the mormyrid Gnathonemus petersii (G. petersii), given the extensive study of this species, particularly its object recognition abilities. By studying object detection and recognition, we can assess the potential benefits of self-driven movements to enhance selection of biologically relevant information. Finally, these findings are highly relevant to understanding the involvement of movement in shaping the sensory experience of animals that use other sensory modalities. Understanding the overlap between sensory and motor systems will give insight into how different species have become adapted to their environments.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 579.2KB, Terms of use)
-
- Publisher copy:
- 10.1111/jzo.13046
Authors
- Publisher:
- Wiley
- Journal:
- Journal of Zoology More from this journal
- Volume:
- 319
- Issue:
- 4
- Pages:
- 243-253
- Publication date:
- 2023-01-30
- Acceptance date:
- 2022-12-22
- DOI:
- EISSN:
-
1469-7998
- ISSN:
-
0952-8369
- Language:
-
English
- Keywords:
- Pubs id:
-
1322223
- Local pid:
-
pubs:1322223
- Deposit date:
-
2023-01-17
Terms of use
- Copyright holder:
- Skeels et al.
- Copyright date:
- 2023
- Rights statement:
- © 2023 The Authors. Journal of Zoology published by John Wiley & Sons Ltd on behalf of Zoological Society of London. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record