Journal article
Evolution of the low-temperature Fermi surface of superconducting FeSe1−xSx across a nematic phase transition
- Abstract:
- The existence of a nematic phase transition in iron-chalcogenide superconductors poses an intriguing question about its impact on superconductivity. To understand the nature of this unique quantum phase transition, it is essential to study how the electronic structure changes across this transition at low temperatures. Here, we investigate the evolution of the Fermi surfaces and electronic interactions across the nematic phase transition of FeSe1−xSx using Shubnikov-de Haas oscillations in high magnetic fields up to 45 T in the low temperature regime down to 0.4 K. Most of the Fermi surfaces of FeSe1−xSx monotonically increase in size except for a prominent low frequency oscillation associated with a small, but highly mobile band, which disappears at the nematic phase boundary near x ~ 0.17, indicative of a topological Lifshitz transition. The quasiparticle masses are larger inside the nematic phase, indicative of a strongly correlated state, but they become suppressed outside it. The experimentally observed changes in the Fermi surface topology, together with the varying degree of electronic correlations, will change the balance of electronic interactions in the multi-band system FeSe1−xSx and promote different kz-dependent superconducting pairing channels inside and outside the nematic phase.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 3.0MB, Terms of use)
-
- Publisher copy:
- 10.1038/s41535-018-0141-0
Authors
- Publisher:
- Springer Nature
- Journal:
- npj Quantum Materials More from this journal
- Volume:
- 4
- Article number:
- 2
- Publication date:
- 2019-01-04
- Acceptance date:
- 2018-12-10
- DOI:
- ISSN:
-
2397-4648
- Language:
-
English
- Pubs id:
-
pubs:956374
- UUID:
-
uuid:ff9b1e9c-29f9-4662-ab2a-688ef27b3718
- Local pid:
-
pubs:956374
- Source identifiers:
-
956374
- Deposit date:
-
2019-01-15
Terms of use
- Copyright holder:
- Coldea, et al
- Copyright date:
- 2019
- Notes:
- Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record