Journal article icon

Journal article

Fixed and distributed gene expression time delays in reaction–diffusion systems

Abstract:
Time delays, modelling the process of intracellular gene expression, have been shown to have important impacts on the dynamics of pattern formation in reaction–diffusion systems. In particular, past work has shown that such time delays can shrink the Turing space, thereby inhibiting patterns from forming across large ranges of parameters. Such delays can also increase the time taken for pattern formation even when Turing instabilities occur. Here, we consider reaction–diffusion models incorporating fixed or distributed time delays, modelling the underlying stochastic nature of gene expression dynamics, and analyse these through a systematic linear instability analysis and numerical simulations for several sets of different reaction kinetics. We find that even complicated distribution kernels (skewed Gaussian probability density functions) have little impact on the reaction–diffusion dynamics compared to fixed delays with the same mean delay. We show that the location of the delay terms in the model can lead to changes in the size of the Turing space (increasing or decreasing) as the mean time delay, 𝜏, is increased. We show that the time to pattern formation from a perturbation of the homogeneous steady state scales linearly with 𝜏, and conjecture that this is a general impact of time delay on reaction–diffusion dynamics, independent of the form of the kinetics or location of the delayed terms. Finally, we show that while initial and boundary conditions can influence these dynamics, particularly the time-to-pattern, the effects of delay appear robust under variations of initial and boundary data. Overall, our results help clarify the role of gene expression time delays in reaction–diffusion patterning, and suggest clear directions for further work in studying more realistic models of pattern formation.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.1007/s11538-022-01052-0

Authors


More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Mathematical Institute
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Mathematical Institute
Oxford college:
Brasenose College
Role:
Author
ORCID:
0000-0002-6888-4362
More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Mathematical Institute
Role:
Author
ORCID:
0000-0001-9638-7278


Publisher:
Springer
Journal:
Bulletin of Mathematical Biology More from this journal
Volume:
84
Issue:
9
Article number:
98
Publication date:
2022-08-07
Acceptance date:
2022-06-30
DOI:
EISSN:
1522-9602
ISSN:
0092-8240
Pmid:
35934760


Language:
English
Keywords:
Pubs id:
1273136
Local pid:
pubs:1273136
Deposit date:
2022-09-04

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP