Conference item icon

Conference item

The application of optimal estimation to lidar

Abstract:
Lidars are ideally placed to investigate the effects of aerosol and cloud on the climate system due to their unprecedented vertical and temporal resolution. Dozens of techniques have been developed in recent decades to retrieve the extinction and backscatter of atmospheric particulates in a variety of conditions. These methods, though often very successful, are fairly ad hoc in their construction, utilising a wide variety of approximations and assumptions that makes comparing the resulting data products with independent measurements difficult and their implementation in climate modelling virtually impossible. As with its application to satellite retrievals at the turn of the century, the methods of non-linear regression can improve this situation by providing a mathematical framework in which the various approximations, estimates of experimental error, and any additional knowledge of the atmosphere can be clearly defined and included in a mathematically `optimal' retrieval method, providing rigorously derived error estimates. In addition to making it easier for scientists outside of the lidar field to understand and utilise lidar data, it also simplifies the process of moving beyond extinction and backscatter coefficients and retrieving microphysical properties of aerosols and cloud particles. A technique to estimate the lidar's overlap function using an analytic model of the optical system and a simple extinction profile has been developed. This is used to calibrate the system such that the profile of extinction and backscatter coefficients can be retrieved using the elastic and nitrogen Raman backscatter signals. These methods have been used to extract value from compromised data collected with a prototype Raman lidar system. Selected events will be presented, with the hope that others may be inspired to apply the techniques to a more robust system.
Publication status:
Published
Peer review status:
Reviewed (other)

Actions


Access Document


Files:

Authors


More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Sub department:
Atmos Ocean & Planet Physics
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Sub department:
Atmos Ocean & Planet Physics
Role:
Author


Publisher:
Centre for Instrumentation
Host title:
RSPSoc - NCEO - CEOI-ST Joint Conference
Publication date:
2015-09-01


Keywords:
Pubs id:
pubs:577308
UUID:
uuid:fbff0c44-92c6-4063-af61-609019bfa16f
Local pid:
pubs:577308
Source identifiers:
577308
Deposit date:
2015-11-30

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP