Journal article icon

Journal article

Testing the binary hypothesis: pulsar timing constraints on supermassive black hole binary candidates

Abstract:
The advent of time domain astronomy is revolutionizing our understanding of the Universe. Programs such as the Catalina Real-time Transient Survey (CRTS) or the Palomar Transient Factory (PTF) surveyed millions of objects for several years, allowing variability studies on large statistical samples. The inspection of $\approx$250k quasars in CRTS resulted in a catalogue of 111 potentially periodic sources, put forward as supermassive black hole binary (SMBHB) candidates. A similar investigation on PTF data yielded 33 candidates from a sample of $\approx$35k quasars. Working under the SMBHB hypothesis, we compute the implied SMBHB merger rate and we use it to construct the expected gravitational wave background (GWB) at nano-Hz frequencies, probed by pulsar timing arrays (PTAs). After correcting for incompleteness and assuming virial mass estimates, we find that the GWB implied by the CRTS sample exceeds the current most stringent PTA upper limits by almost an order of magnitude. After further correcting for the implicit bias in virial mass measurements, the implied GWB drops significantly but is still in tension with the most stringent PTA upper limits. Similar results hold for the PTF sample. Bayesian model selection shows that the null hypothesis (whereby the candidates are false positives) is preferred over the binary hypothesis at about $2.3\sigma$ and $3.6\sigma$ for the CRTS and PTF samples respectively. Although not decisive, our analysis highlights the potential of PTAs as astrophysical probes of individual SMBHB candidates and indicates that the CRTS and PTF samples are likely contaminated by several false positives.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.3847/1538-4357/aaad0f

Authors


More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Sub department:
Theoretical Physics
Oxford college:
St Hugh's College
Role:
Author
ORCID:
0000-0002-4865-7517


Publisher:
American Astronomical Society
Journal:
Astrophysical Journal More from this journal
Volume:
856
Article number:
42
Publication date:
2018-03-22
Acceptance date:
2018-02-02
DOI:
EISSN:
1538-4357
ISSN:
0004-637X


Language:
English
Keywords:
Pubs id:
1128018
Local pid:
pubs:1128018
Deposit date:
2020-08-24

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP