Journal article icon

Journal article

Hydrazine‐Mediated Thermally Assisted Photocatalytic Ammonia Decomposition Over Layered Protonated Perovskites

Abstract:
Photocatalytic ammonia decomposition offers a sustainable route for hydrogen production, but its development is limited by low catalytic efficiency and poorly understood mechanisms. Here, a protonated layered perovskite, HPrNb2O7 (HPNO), is reported as an efficient catalyst for ammonia decomposition under mild photo‐thermal conditions. Upon exposure to NH3 at elevated temperatures, HPNO promotes the in situ formation and intercalation of hydrazine intermediates within its interlayer galleries, enabled by thermally generated oxygen vacancies and hydrogen bonding. Advanced characterization techniques have been applied to confirm the formation and stabilization of hydrazine. It is also shown that thermal energy prolongs charge carrier lifetimes and enhances oxygen vacancy formation, contributing to a strong photo‐thermal synergy. The stabilization of hydrazine intermediate promotes the associative mechanism, lowering the activation barrier, thus leading to an enhanced hydrogen evolution rate of 1311.2 µmol·g−1·h−1 at 200 °C under simulated solar irradiation without any noble metal co‐catalyst. This work reveals a distinct, hydrazine‐mediated reaction pathway and positions layered protonated perovskites as promising materials for efficient, solar‐driven ammonia decomposition and sustainable hydrogen generation.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Publisher copy:
10.1002/advs.202511212

Authors


More by this author
Institution:
University of Oxford
Role:
Author
More by this author
Institution:
University of Oxford
Role:
Author
More by this author
Institution:
University of Oxford
Role:
Author
More by this author
Institution:
University of Oxford
Role:
Author



Publisher:
Wiley
Journal:
Advanced Science More from this journal
Article number:
e11212
Publication date:
2025-08-29
DOI:
EISSN:
2198-3844
ISSN:
2198-3844


Language:
English
Keywords:
Source identifiers:
3242033
Deposit date:
2025-08-29
This ORA record was generated from metadata provided by an external service. It has not been edited by the ORA Team.

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP