Journal article icon

Journal article

Self-organizing continuous attractor networks and motor function.

Abstract:
Motor skill learning may involve training a neural system to automatically perform sequences of movements, with the training signals provided by a different system, used mainly during training to perform the movements, that operates under visual sensory guidance. We use a dynamical systems perspective to show how complex motor sequences could be learned by the automatic system. The network uses a continuous attractor network architecture to perform path integration on an efference copy of the motor signal to keep track of the current state, and selection of which motor cells to activate by a movement selector input where the selection depends on the current state being represented in the continuous attractor network. After training, the correct motor sequence may be selected automatically by a single movement selection signal. A feature of the model presented is the use of 'trace' learning rules which incorporate a form of temporal average of recent cell activity. This form of temporal learning underlies the ability of the networks to learn temporal sequences of behaviour. We show that the continuous attractor network models developed here are able to demonstrate the key features of motor function. That is, (i) the movement can occur at arbitrary speeds; (ii) the movement can occur with arbitrary force; (iii) the agent spends the same relative proportions of its time in each part of the motor sequence; (iv) the agent applies the same relative force in each part of the motor sequence; and (v) the actions always occur in the same sequence.
Publication status:
Published

Actions


Access Document


Publisher copy:
10.1016/s0893-6080(02)00237-x

Authors


More by this author
Institution:
University of Oxford
Division:
MSD
Department:
Experimental Psychology
Role:
Author


Journal:
Neural networks : the official journal of the International Neural Network Society More from this journal
Volume:
16
Issue:
2
Pages:
161-182
Publication date:
2003-03-01
DOI:
EISSN:
1879-2782
ISSN:
0893-6080


Language:
English
Keywords:
Pubs id:
pubs:25820
UUID:
uuid:f68f00b8-0dd9-4c5f-8e64-d73b48f183f5
Local pid:
pubs:25820
Source identifiers:
25820
Deposit date:
2012-12-19

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP