Journal article
Electron trapping and reinjection in prepulse-shaped gas targets for laser-plasma accelerators
- Abstract:
- A novel mechanism for injection, emittance selection, and postacceleration for laser wakefield electron acceleration is identified and described. It is shown that a laser prepulse can create an ionized plasma filament through multiphoton ionization and this heats the electrons and ions, driving an ellipsoidal blast-wave aligned with the laser-axis. The subsequent high-intensity laser-pulse generates a plasma wakefield which, on entering the leading edge of the blast-wave structure, encounters a sharp reduction in electron density, causing density down-ramp electron injection. The injected electrons are accelerated to ∼2 MeV within the blast-wave. After the main laser-pulse has propagated past the blast-wave, it drives a secondary wakefield within the homogenous background plasma. On exiting the blast-wave structure, the preaccelerated electrons encounter these secondary wakefields, are retrapped, and accelerated to higher energies. Due to the longitudinal extent of the blast-wave, only those electrons with small transverse velocity are retrapped, leading to the potential for the generation of electron bunches with reduced transverse size and emittance.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, 1.8MB, Terms of use)
-
- Publisher copy:
- 10.1103/physrevaccelbeams.23.111301
Authors
+ Engineering & Physical Sciences Research Council
More from this funder
- Grant:
- EP/G067791/1
- EP/H011145/1
- Publisher:
- American Physical Society
- Journal:
- Physical Review Accelerators and Beams More from this journal
- Volume:
- 23
- Issue:
- 11
- Article number:
- 111301
- Publication date:
- 2020-11-11
- Acceptance date:
- 2020-09-23
- DOI:
- EISSN:
-
2469-9888
- Language:
-
English
- Keywords:
- Pubs id:
-
1145396
- Local pid:
-
pubs:1145396
- Deposit date:
-
2020-11-13
Terms of use
- Copyright holder:
- Scott et al.
- Copyright date:
- 2020
- Rights statement:
- ©2020 The Author(s).
- Notes:
- Open Access: Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record