Journal article icon

Journal article

Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo.

Abstract:
The recruitment of monocytes and their differentiation into macrophages at sites of inflammation are key events in determining the outcome of the inflammatory response and initiating the return to tissue homeostasis. To study monocyte trafficking and macrophage differentiation in vivo, we have generated a novel transgenic reporter mouse expressing a green fluorescent protein (GFP) under the control of the human CD68 promoter. CD68-GFP mice express high levels of GFP in both monocyte and embryo-derived tissue resident macrophages in adult animals. The human CD68 promoter drives GFP expression in all CD115(+) monocytes of adult blood, spleen, and bone marrow; we took advantage of this to directly compare the trafficking of bone marrow-derived CD68-GFP monocytes to that of CX3CR1(GFP) monocytes in vivo using a sterile zymosan peritonitis model. Unlike CX3CR1(GFP) monocytes, which downregulate GFP expression on differentiation into macrophages in this model, CD68-GFP monocytes retain high-level GFP expression for 72 hours after differentiation into macrophages, allowing continued cell tracking during resolution of inflammation. In summary, this novel CD68-GFP transgenic reporter mouse line represents a powerful resource for analyzing monocyte mobilization and monocyte trafficking as well as studying the fate of recruited monocytes in models of acute and chronic inflammation.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Publisher copy:
10.1182/blood-2014-04-568691

Authors


More by this author
Institution:
University of Oxford
Division:
MSD
Department:
Pathology Dunn School
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MSD
Department:
RDM
Sub department:
RDM Cardiovascular Medicine
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MSD
Department:
Pathology Dunn School
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MSD
Department:
Pathology Dunn School
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MSD
Department:
Physiology Anatomy & Genetics
Role:
Author


Publisher:
American Society of Hematology
Journal:
Blood More from this journal
Volume:
124
Issue:
15
Pages:
e33-e44
Publication date:
2014-10-01
DOI:
EISSN:
1528-0020
ISSN:
0006-4971

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP