Conference item
Bayesian Synchronous Grammar Induction.
- Abstract:
- We present a novel method for inducing synchronous context free grammars (SCFGs) from a corpus of parallel string pairs. SCFGs can model equivalence between strings in terms of substitutions, insertions and deletions, and the reordering of sub-strings. We develop a non-parametric Bayesian model and apply it to a machine translation task, using priors to replace the various heuristics commonly used in this field. Using a variational Bayes training procedure, we learn the latent structure of translation equivalence through the induction of synchronous grammar categories for phrasal translations, showing improvements in translation performance over maximum likelihood models.
Actions
Authors
Contributors
+ Koller, D
- Role:
- Editor
+ Schuurmans, D
- Role:
- Editor
+ Bengio, Y
- Role:
- Editor
+ Bottou, L
- Role:
- Editor
- Publisher:
- Curran Associates, Inc.
- Host title:
- NIPS
- Pages:
- 161-168
- Publication date:
- 2008-01-01
- ISBN:
- 9781605609492
- Pubs id:
-
pubs:328107
- UUID:
-
uuid:ea936cae-8be4-400a-8f12-8ff88b877cc2
- Local pid:
-
pubs:328107
- Source identifiers:
-
328107
- Deposit date:
-
2012-12-19
Terms of use
- Copyright date:
- 2008
If you are the owner of this record, you can report an update to it here: Report update to this record