Journal article icon

Journal article

RIPK1 is a critical modulator of both tonic and TLR-responsive inflammatory and cell death pathways in human macrophage differentiation

Abstract:
In this study, we took advantage of human-induced pluripotent stem cells (hiPSC) and CRISPR/Cas9 technology to investigate the potential roles of RIPK1 in regulating hematopoiesis and macrophage differentiation, proinflammatory activation, and cell death pathways. Knock-out of RIPK1 in hiPSCs demonstrated that this protein is not required for erythro-myeloid differentiation. Using a well-established macrophage differentiation protocol, knock-out of RIPK1 did not block the differentiation of iPSC-derived macrophages, which displayed a similar phenotype to WT hiPSC-derived macrophages. However, knock-out of RIPK1 leads to a TNFα-dependent apoptotic death of differentiated hiPSC-derived macrophages (iPS-MΦ) and progressive loss of iPS-MΦ production irrespective of external pro-inflammatory stimuli. Live video analysis demonstrated that TLR3/4 activation of RIPK1 KO hiPSC-derived macrophages triggered TRIF and RIPK3-dependent necroptosis irrespective of caspase-8 activation. In contrast, TLR3/4 activation of WT macrophages-induced necroptosis only when caspases were inhibited, confirming the modulating effect of RIPK1 on RIPK3-mediated necroptosis through the FADD, Caspase-8 pathway. Activation of these inflammatory pathways required RIPK3 kinase activity while RIPK1 was dispensable. However, loss of RIPK1 sensitizes macrophages to activate RIPK3 in response to inflammatory stimuli, thereby exacerbating a potentially pathological inflammatory response. Taken together, these results reveal that RIPK1 has an important role in regulating the potent inflammatory pathways in authentic human macrophages that are poised to respond to external stimuli. Consequently, RIPK1 activity might be a valid target in the development of novel therapies for chronic inflammatory diseases.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Publisher copy:
10.1038/s41419-018-1053-4

Authors


More by this author
Institution:
University of Oxford
Division:
Medical Sciences Division
Department:
Pathology Dunn School
Role:
Author
ORCID:
0000-0003-4790-7577
More by this author
Institution:
University of Oxford
Division:
Medical Sciences Division
Department:
Pathology Dunn School
Role:
Author
ORCID:
0000-0003-2630-0442
More by this author
Institution:
University of Oxford
Division:
Medical Sciences Division
Department:
Pathology Dunn School
Role:
Author
More by this author
Institution:
University of Oxford
Division:
Medical Sciences Division
Department:
Pathology Dunn School
Role:
Author



Publisher:
Springer Nature
Journal:
Cell Death and Disease More from this journal
Volume:
9
Article number:
973
Publication date:
2018-09-24
Acceptance date:
2018-09-11
DOI:
EISSN:
2041-4889
Pmid:
30250197


Language:
English
Pubs id:
pubs:922283
UUID:
uuid:ea151598-9be9-42a9-a98a-2025fcaebf64
Local pid:
pubs:922283
Source identifiers:
922283
Deposit date:
2018-10-01

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP