Journal article
Trapping games on random boards
- Abstract:
-
We consider the following two-player game on a graph. A token is located at a vertex, and the players take turns to move it along an edge to a vertex that has not been visited before. A player who cannot move loses. We analyze outcomes with optimal play on percolation clusters of Euclidean lattices.
On Z2 with two different percolation parameters for odd and even sites, we prove that the game has no draws provided closed sites of one parity are sufficiently rare compared with those of the other parity (thus favoring one player). We prove this also for certain d-dimensional lattices with d ≥ 3. It is an open question whether draws can occur when the two parameters are equal.
On a finite ball of Z2, with only odd sites closed but with the external boundary consisting of even sites, we identify up to logarithmic factors a critical window for the trade-off between the size of the ball and the percolation parameter. Outside this window, one or other player has a decisive advantage.
Our analysis of the game is intimately tied to the effect of boundary conditions on maximum-cardinality matchings.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 724.8KB, Terms of use)
-
- Publisher copy:
- 10.1214/16-AAP1190
Authors
- Funder identifier:
- https://ror.org/0439y7842
- Grant:
- EP/E060730/1
- Funder identifier:
- https://ror.org/01an7q238
- Funder identifier:
- https://ror.org/004hzzk67
- Publisher:
- Institute of Mathematical Statistics
- Journal:
- Annals of Applied Probability More from this journal
- Volume:
- 26
- Issue:
- 6
- Pages:
- 3727-3753
- Publication date:
- 2016-12-15
- Acceptance date:
- 2016-02-19
- DOI:
- EISSN:
-
2168-8737
- ISSN:
-
1050-5164
- Language:
-
English
- Keywords:
- Pubs id:
-
pubs:606932
- UUID:
-
uuid:e8ce7dea-1da3-43e1-8c03-4905716f281a
- Local pid:
-
pubs:606932
- Source identifiers:
-
606932
- Deposit date:
-
2016-03-01
Terms of use
- Copyright holder:
- Institute of Mathematical Statistics
- Copyright date:
- 2016
- Rights statement:
- © Institute of Mathematical Statistics, 2016
If you are the owner of this record, you can report an update to it here: Report update to this record