Journal article
Cooling channel free surface optimisation for additively manufactured casting tools
- Abstract:
- In the present study, an algorithm has been developed using the adjoint method to optimise the position and cross-section of an internal cooling channel for a 3D printed tool steel insert for use in the aluminium die-casting process. The algorithm enables the development of an optimised complex industrial mould with relatively low computational cost. A transient model is validated against multiple experimental trials, providing an adapted interface heat transfer coefficient. A steady state thermal model, based on the casting cycle and thermal behaviour at the mould surface, is developed to evaluate the spatial distribution of temperature and to serve as the initial solution for the subsequent optimisation stage. The adjoint model is then applied to optimise the cooling channel emphasising the minimisation of the temperature standard deviation for the mould surface. The original transient model is applied to the optimised mould configuration via calibration using experimental data obtained from a dedicated aluminium furnace. The optimised cooling channel geometry, which uses a non-uniform cross-section across the entire pipe surface region, improves the pressure drop and cooling uniformity across the mould/cast interface by 24.2% and 31.6%, respectively. The model has been used to optimise cooling channels for a range of industrial high-pressure aluminium die-casting (HPADC) inserts. This has yielded a significant improvement in the mould operational lifetime, rising to almost 130,000 shots compared to 40,000 shots for prior designs.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 3.3MB, Terms of use)
-
- Publisher copy:
- 10.1007/s00170-023-11402-4
Authors
- Publisher:
- Springer
- Journal:
- International Journal of Advanced Manufacturing Technology More from this journal
- Volume:
- 127
- Issue:
- 3-4
- Pages:
- 1293-1315
- Publication date:
- 2023-05-26
- Acceptance date:
- 2023-04-04
- DOI:
- EISSN:
-
1433-3015
- ISSN:
-
0268-3768
- Language:
-
English
- Keywords:
- Pubs id:
-
1490250
- Local pid:
-
pubs:1490250
- Deposit date:
-
2023-08-03
Terms of use
- Copyright holder:
- Zeng et al.
- Copyright date:
- 2023
- Rights statement:
- Copyright © 2023, The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record