Journal article
Gradients of sequences of subgroups in a direct product
- Abstract:
- For a sequence $\{U_n\}_{n = 1}^\infty$ of finite index subgroups of a direct product $G = A \times B$ of finitely generated groups, we show that $$\lim_{n \to \infty} \frac{\min\{|X| : \langle X \rangle = U_n\}}{[G : U_n]} = 0$$ once $[A : A \cap U_n], [B : B \cap U_n] \to \infty$ as $n \to \infty$. Our proof relies on the classification of finite simple groups. For $A,B$ that are finitely presented we show that $$ \lim_{n \to \infty} \frac{\log |\mathrm{Torsion}(U_n^{\mathrm{ab}})|}{[G : U_n]} = 0. $$
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Authors
- Publisher:
- Oxford University Press
- Journal:
- International Mathematics Research Notices More from this journal
- Volume:
- 2017
- Pages:
- 1-14
- Publication date:
- 2017-10-09
- Acceptance date:
- 2017-09-11
- DOI:
- Keywords:
- Pubs id:
-
pubs:648395
- UUID:
-
uuid:e79c7d35-069e-4422-bdf9-2af2e46f5af9
- Local pid:
-
pubs:648395
- Source identifiers:
-
648395
- Deposit date:
-
2017-10-13
Terms of use
- Copyright holder:
- Nikolov et al
- Copyright date:
- 2017
- Notes:
- © The Author(s) 2017
If you are the owner of this record, you can report an update to it here: Report update to this record