Thesis icon

Thesis

Understanding video through the lens of language

Abstract:

The increasing abundance of video data online necessitates the development of systems capable of understanding such content. However, building these systems poses significant challenges, including the absence of scalable and robust supervision signals, computational complexity, and multimodal modelling. To address these issues, this thesis explores the role of language as a complementary learning signal for video, drawing inspiration from the success of self-supervised Large Language Models (LLMs) and image-language models.


First, joint video-language representations are examined under the text-to-video retrieval task. This includes the study of pre-extracted multimodal features, the influence of contextual information, joint end-to-end learning of both image and video representations, and various frame aggregation methods for long-form videos. In doing so, state-of-the-art performance is achieved across a range of established video-text benchmarks.


Second, this work explores the automatic generation of audio description (AD) – narrations describing the visual happenings in a video, for the benefit of visually impaired audiences. An LLM, prompted with multimodal information, including past predictions, and pretrained with partial data sources, is employed for the task. In the process, substantial advancements are achieved in the following areas: efficient speech transcription, long-form visual storytelling, referencing character names, and AD time-point prediction. Finally, audiovisual behaviour recognition is applied to the field of wildlife conservation and ethology. The approach is used to analyse vast video archives of wild primates, revealing insights into individual and group behaviour variations, with the potential for monitoring the effects of human pressures on animal habitats.

Actions


Access Document


Files:

Authors


More by this author
Oxford college:
Christ Church
Role:
Author

Contributors

Role:
Supervisor
ORCID:
0000-0002-8945-8573
Role:
Examiner
Institution:
King Abdullah University of Science and Technology
Role:
Examiner


DOI:
Type of award:
DPhil
Level of award:
Doctoral
Awarding institution:
University of Oxford

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP