Journal article
Microstructural understanding of the oxidation of an austenitic stainless steel in high-temperature steam through advanced characterization
- Abstract:
- It is well-known that steels always oxidize faster in the environments containing water vapour than in dry oxygen. Due to the difficulties in obtaining necessary experimental scale of observations, the mechanisms responsible for the steam-accelerated oxidation are still unclear. Through a combination of multiscale characterization techniques, the surface oxide film formed on an Fe-17Cr-9Ni stainless steel after exposure to high-temperature steam has been studied in detail. The characterization results obtained in this study reveal that the inner oxide layer actually consists of two phases Fe-Ni austenite and FeCr2O4 oxide, which formed due to internal oxidation. The classic internal oxidation model underestimates the thickness of the inner oxide layer by one order of magnitude. This difference can be explained by the existence of fast diffusion channels in the inner oxide layer. This study provides direct evidence of a high density of nanopores in the oxide phase of the internal oxide layer, which can act as fast-diffusion channels if interconnected, and proposes their mechanisms of formation, a consequence of water dissociation-induced protons promoting the formation, migration, and clustering of both cation and anion vacancies.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Accepted manuscript, 9.1MB, Terms of use)
-
- Publisher copy:
- 10.1016/j.actamat.2020.05.010
Authors
- Publisher:
- Elsevier
- Journal:
- Acta Materialia More from this journal
- Volume:
- 194
- Pages:
- 321-336
- Publication date:
- 2020-05-17
- Acceptance date:
- 2020-05-05
- DOI:
- ISSN:
-
1359-6454
- Language:
-
English
- Keywords:
- Pubs id:
-
1103762
- Local pid:
-
pubs:1103762
- Deposit date:
-
2020-05-10
Terms of use
- Copyright holder:
- Acta Materialia Inc.
- Copyright date:
- 2020
- Rights statement:
- © 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
- Notes:
- This is the accepted manuscript version of the article, available under the terms of a Creative Commons, Attribution, Non-Commercial, No Derivatives licence. The final version is available online from Elsevier at: https://doi.org/10.1016/j.actamat.2020.05.010
If you are the owner of this record, you can report an update to it here: Report update to this record