Conference item
Breakdown resistance analysis of traction motor winding insulation under thermal ageing
- Abstract:
- Stator inter-turn faults are among the most important electric motor failures as they progress fast and lead to catastrophic motor breakdowns. Inter-turn faults are caused due to the windings’ insulation degradation. The main stress which deteriorates the insulation is the thermal one. Proper understanding of how this stress influences the electrical properties of insulation over time may lead to reliable prognosis and estimation of the motor’s remaining useful life. In transport applications where reliability and safety come first it is a critical issue. In this paper, extensive experimental testing and statistical analysis of thin film insulation for traction motor windings has been performed under fixed thermal stress. The results indicate that for high thermal stress the electrical properties of the insulation material present a non-monotonic behavior thus proving the well-known and established Arrhenius law inadequate for modelling this type of problems and estimating the remaining useful life of thin film insulation materials.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Accepted manuscript, pdf, 1.2MB, Terms of use)
-
- Publisher copy:
- 10.1109/ECCE.2017.8096964
Authors
- Publisher:
- Institute of Electrical and Electronics Engineers
- Host title:
- 2017 IEEE Energy Conversion Congress and Exposition (ECCE)
- Journal:
- 2017 IEEE Energy Conversion Congress and Exposition More from this journal
- Publication date:
- 2017-11-01
- Acceptance date:
- 2017-05-01
- DOI:
- Keywords:
- Pubs id:
-
pubs:697154
- UUID:
-
uuid:df5d40d0-2485-43ec-be7d-813d5dacb462
- Local pid:
-
pubs:697154
- Source identifiers:
-
697154
- Deposit date:
-
2017-11-20
Terms of use
- Copyright holder:
- Institute of Electrical and Electronics Engineers
- Copyright date:
- 2017
- Notes:
- ©2017 IEEE
If you are the owner of this record, you can report an update to it here: Report update to this record