Journal article icon

Journal article

Probing the topological surface state in Bi₂Se₃ thin films using temperature-dependent terahertz spectroscopy

Abstract:
Strong spin-momentum coupling in topological insulators give rise to topological surface states, protected against disorder scattering by time reversal symmetry. The study of these exotic quantum states not only provides an opportunity to explore fundamental phenomenon in condensed matter physics such as the spin hall effect, but also lays the foundation for applications in quantum computing to spintronics. Conventional electrical measurements suffer from substantial bulk interference, making it difficult to clearly identify topological surface state from the bulk. We use terahertz time-domain spectroscopy to study the temperature-dependent optical behavior of a 23-quintuple-thick film of bismuth selenide (Bi2Se3) allowing the deconvolution of the surface state response from the bulk. The signatures of the topological surface state at low temperatures (< 30 K) with the optical conductance of Bi2Se3 exhibiting a metallic behavior are observed. Measurement of carrier dynamics, obtain an optical mobility, exceeding 2000 cm2/V•s at 4 K, indicative of a surface-dominated response. A scattering lifetime of ~0.18 ps and a carrier density of 6×1012 cm-2 at 4 K were obtained from the terahertz time-domain spectroscopy measurement. The terahertz conductance spectra reveal characteristic features at ~1.9 THz, attributed to the optical phonon mode, which becomes less prominent with falling temperature. The electrical transport measurements reveal weak antilocalization behavior in our Bi2Se3 sample, consistent with the presence of a topological surface state.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.1021/acsphotonics.7b00492

Authors


More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Sub department:
Condensed Matter Physics
Role:
Author


More from this funder
Funding agency for:
Kamboj, V
Singh, A
Grant:
EP/J017671/1
More from this funder
Funding agency for:
Kamboj, V
Ritchie, D
Beere, H
Duffy, L
Grant:
EP/J017671/1
EP/J017671/1
EP/J017671/1
More from this funder
Funding agency for:
Hesjedal, T


Publisher:
American Chemical Society
Journal:
ACS Photonics More from this journal
Volume:
4
Issue:
11
Pages:
2711-2718
Publication date:
2017-09-27
Acceptance date:
2017-09-26
DOI:
ISSN:
2330-4022


Pubs id:
pubs:730890
UUID:
uuid:dccffe33-f519-46cf-89e4-085d116d7f84
Local pid:
pubs:730890
Source identifiers:
730890
Deposit date:
2017-09-28

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP