Journal article
Contiguous and atomically thin pt film with supra-bulk behavior through graphene-imposed epitaxy
- Abstract:
- The nature of the atomic configuration and the bonding within epitaxial Pt-graphene films is investigated. Graphene-templated monolayer/few-multilayers of Pt, synthesized as contiguous 2D films by room temperature electrochemical methods, is shown to exhibit a stable {100} structure in the 1–2 layer range. The fundamental question being investigated is whether surface Pt atoms rendered in these 2D architectures are as stable as those of their bulk Pt counterparts. Unsurprisingly, a single layer Pt on the graphene (Pt_1ML/GR) shows much larger Pt dissociation energy (−7.51 eV) than does an isolated Pt atom on graphene. However, the dissociation energy from Pt_1ML/GR is similar to that of bulk Pt(100), −7.77 eV, while in bi-layer Pt on the graphene (Pt_2ML/GR), this energy changes to −8.63 eV, surpassing its bulk counterpart. At Pt_2ML/GR, the dissociation energy also slightly surpasses that of bulk Pt(111). Bulk-like stability of atomically thin Pt–graphene results from a combination of interplanar PtC covalent bonding and inter/intraplanar metallic bonding. This unprecedented stability is also accompanied by a metal-like presence of electronic states at the Fermi level. Such atomically thin metal-graphene architectures can be a new stable platform for synthesizing 2D metallic films with various applications in catalysis, sensing, and electronics.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Accepted manuscript, pdf, 2.0MB, Terms of use)
-
- Publisher copy:
- 10.1002/adfm.201902274
Authors
- Publisher:
- Wiley
- Journal:
- Advanced Functional Materials More from this journal
- Volume:
- 29
- Issue:
- 46
- Article number:
- 1902274
- Publication date:
- 2019-09-18
- DOI:
- EISSN:
-
1616-3028
- ISSN:
-
1616-301X
- Language:
-
English
- Keywords:
- Pubs id:
-
pubs:1072447
- UUID:
-
uuid:d91c5fc8-06ab-4be7-830a-5114fca5412a
- Local pid:
-
pubs:1072447
- Source identifiers:
-
1072447
- Deposit date:
-
2020-01-08
Terms of use
- Copyright holder:
- Wiley
- Copyright date:
- 2019
- Rights statement:
- © 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
- Notes:
- This is the accepted manuscript version of the article. The final version is available from Wiley at: https://doi.org/10.1002/adfm.201902274
If you are the owner of this record, you can report an update to it here: Report update to this record