Journal article icon

Journal article

Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model.

Abstract:
Many neurological conditions are caused by immensely heterogeneous gene mutations. The diagnostic process is often long and complex with most patients undergoing multiple invasive and costly investigations without ever reaching a conclusive molecular diagnosis. The advent of massively parallel, next-generation sequencing promises to revolutionize genetic testing and shorten the 'diagnostic odyssey' for many of these patients. We performed a pilot study using heterogeneous ataxias as a model neurogenetic disorder to assess the introduction of next-generation sequencing into clinical practice. We captured 58 known human ataxia genes followed by Illumina Next-Generation Sequencing in 50 highly heterogeneous patients with ataxia who had been extensively investigated and were refractory to diagnosis. All cases had been tested for spinocerebellar ataxia 1-3, 6, 7 and Friedrich's ataxia and had multiple other biochemical, genetic and invasive tests. In those cases where we identified the genetic mutation, we determined the time to diagnosis. Pathogenicity was assessed using a bioinformatics pipeline and novel variants were validated using functional experiments. The overall detection rate in our heterogeneous cohort was 18% and varied from 8.3% in those with an adult onset progressive disorder to 40% in those with a childhood or adolescent onset progressive disorder. The highest detection rate was in those with an adolescent onset and a family history (75%). The majority of cases with detectable mutations had a childhood onset but most are now adults, reflecting the long delay in diagnosis. The delays were primarily related to lack of easily available clinical testing, but other factors included the presence of atypical phenotypes and the use of indirect testing. In the cases where we made an eventual diagnosis, the delay was 3-35 years (mean 18.1 years). Alignment and coverage metrics indicated that the capture and sequencing was highly efficient and the consumable cost was ∼£400 (€460 or US$620). Our pathogenicity interpretation pathway predicted 13 different mutations in eight different genes: PRKCG, TTBK2, SETX, SPTBN2, SACS, MRE11, KCNC3 and DARS2 of which nine were novel including one causing a newly described recessive ataxia syndrome. Genetic testing using targeted capture followed by next-generation sequencing was efficient, cost-effective, and enabled a molecular diagnosis in many refractory cases. A specific challenge of next-generation sequencing data is pathogenicity interpretation, but functional analysis confirmed the pathogenicity of novel variants showing that the pipeline was robust. Our results have broad implications for clinical neurology practice and the approach to diagnostic testing.
Publication status:
Published

Actions


Access Document


Publisher copy:
10.1093/brain/awt236

Authors


More by this author
Institution:
University of Oxford
Division:
MSD
Department:
Clinical Neurosciences
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MSD
Department:
Physiology Anatomy & Genetics
Role:
Author


Journal:
Brain : a journal of neurology More from this journal
Volume:
136
Issue:
Pt 10
Pages:
3106-3118
Publication date:
2013-10-01
DOI:
EISSN:
1460-2156
ISSN:
0006-8950


Language:
English
Keywords:
Pubs id:
pubs:427658
UUID:
uuid:d6beb75e-89b6-4ea0-861c-df543f253d6f
Local pid:
pubs:427658
Source identifiers:
427658
Deposit date:
2013-11-16

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP