Journal article
Calabi-Yau Manifolds Over Finite Fields, II
- Abstract:
- We study zeta-functions for a one parameter family of quintic threefolds defined over finite fields and for their mirror manifolds and comment on their structure. The zeta-function for the quintic family involves factors that correspond to a certain pair of genus 4 Riemann curves. The appearance of these factors is intriguing since we have been unable to `see' these curves in the geometry of the quintic. Having these zeta-functions to hand we are led to comment on their form in the light of mirror symmetry. That some residue of mirror symmetry survives into the zeta-functions is suggested by an application of the Weil conjectures to Calabi-Yau threefolds: the zeta-functions are rational functions and the degrees of the numerators and denominators are exchanged between the zeta-functions for the manifold and its mirror. It is clear nevertheless that the zeta-function, as classically defined, makes an essential distinction between Kahler parameters and the coefficients of the defining polynomial. It is an interesting question whether there is a `quantum modification' of the zeta-function that restores the symmetry between the Kahler and complex structure parameters. We note that the zeta-function seems to manifest an arithmetic analogue of the large complex structure limit which involves 5-adic expansion.
Actions
Authors
- Publication date:
- 2004-02-17
- Keywords:
- Pubs id:
-
pubs:146949
- UUID:
-
uuid:d66a11dc-db0b-420b-9ec5-23ea437b01e6
- Local pid:
-
pubs:146949
- Source identifiers:
-
146949
- Deposit date:
-
2012-12-19
Terms of use
- Copyright date:
- 2004
- Notes:
- Plain TeX, 50 pages, 4 eps figures
If you are the owner of this record, you can report an update to it here: Report update to this record