Journal article icon

Journal article

Exaggerated trans-membrane charge of ammonium transporters in nutrient-poor marine environments

Abstract:
Transporter proteins are a vital interface between cells and their environment. In nutrient-limited environments, microbes with transporters that are effective at bringing substrates into their cells will gain a competitive advantage over variants with reduced transport function. Microbial ammonium transporters (Amt) bring ammonium into the cytoplasm from the surrounding periplasm space, but diagnosing Amt adaptations to low nutrient environments solely from sequence data has been elusive. Here, we report altered Amt sequence amino acid distribution from deep marine samples compared to variants sampled from shallow water in two important microbial lineages of the marine water column community-Marine Group I Archaea (Thermoproteota) and the uncultivated gammaproteobacterial lineage SAR86. This pattern indicates an evolutionary pressure towards an increasing dipole in Amt for these clades in deep ocean environments and is predicted to generate stronger electric fields facilitating ammonium acquisition. This pattern of increasing dipole charge with depth was not observed in lineages capable of accessing alternative nitrogen sources, including the abundant alphaproteobacterial clade SAR11. We speculate that competition for ammonium in the deep ocean drives transporter sequence evolution. The low concentration of ammonium in the deep ocean is therefore likely due to rapid uptake by Amts concurrent with decreasing nutrient flux.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.1098/rsob.220041

Authors


More by this author
Role:
Author
ORCID:
0000-0002-8310-7078
More by this author
Role:
Author
ORCID:
0000-0001-9796-1956
More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Biology
Sub department:
Zoology
Role:
Author
More by this author
Role:
Author
ORCID:
0000-0003-2503-8219


Publisher:
Royal Society
Journal:
Open Biology More from this journal
Volume:
12
Issue:
7
Article number:
220041
Publication date:
2022-07-13
Acceptance date:
2022-06-13
DOI:
EISSN:
2046-2441
Pmid:
35857930


Language:
English
Keywords:
Pubs id:
1269740
Local pid:
pubs:1269740
Deposit date:
2022-08-26

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP