Journal article
Sound speed and attenuation of human pancreas and pancreatic tumors and their influence on focused ultrasound thermal and mechanical therapies
- Abstract:
-
Background
There is increasing interest in using ultrasound for thermal ablation, histotripsy, and thermal or cavitational enhancement of drug delivery for the treatment of pancreatic cancer. Ultrasonic and thermal modelling conducted as part of the treatment planning process requires acoustic property values for all constituent tissues, but the literature contains no data for the human pancreas.Purpose
This study presents the first acoustic property measurements of human pancreatic samples and provides examples of how these properties impact a broad range of ultrasound therapies.Methods
Data were collected on human pancreatic tissue samples at physiological temperature from 23 consented patients in cooperation with a hospital pathology laboratory. Propagation of ultrasound over the 2.1–4.5 MHz frequency range through samples of various thicknesses and pathologies was measured using a set of custom-built ultrasonic calipers, with the data processed to estimate sound speed and attenuation. The results were used in acoustic and thermal simulations to illustrate the impacts on extracorporeal ultrasound therapies for mild hyperthermia, thermal ablation, and histotripsy implemented with a CE-marked clinical system operating at 0.96 MHz.Results
The mean sound speed and attenuation coefficient values for human samples were well below the range of values in the literature for non-human pancreata, while the human attenuation power law exponents were substantially higher. The simulated impacts on ultrasound mediated therapies for the pancreas indicated that when using the human data instead of the literature average, there was a 30% reduction in median temperature elevation in the treatment volume for mild hyperthermia and 43% smaller volume within a 60°C contour for thermal ablation, all driven by attenuation. By comparison, impacts on boiling and intrinsic threshold histotripsy were minor, with peak pressures changing by less than 15% (positive) and 1% (negative) as a consequence of the counteracting effects of attenuation and sound speed.Conclusion
This study provides the most complete set of speed of sound and attenuation data available for the human pancreas, and it reiterates the importance of acoustic material properties in the planning and conduct of ultrasound-mediated procedures, particularly thermal therapies.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 1.3MB, Terms of use)
-
- Publisher copy:
- 10.1002/mp.16622
Authors
+ National Institute for Health Research
More from this funder
- Funder identifier:
- https://ror.org/0187kwz08
- Publisher:
- Wiley
- Journal:
- Medical Physics More from this journal
- Volume:
- 51
- Issue:
- 2
- Pages:
- 809-825
- Place of publication:
- United States
- Publication date:
- 2023-07-21
- Acceptance date:
- 2023-06-20
- DOI:
- EISSN:
-
2473-4209
- ISSN:
-
0094-2405
- Pmid:
-
37477551
- Language:
-
English
- Keywords:
- Pubs id:
-
1499505
- Local pid:
-
pubs:1499505
- Deposit date:
-
2023-10-18
Terms of use
- Copyright holder:
- Gray et al.
- Copyright date:
- 2023
- Rights statement:
- © 2023 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record