Journal article icon

Journal article

A decision-theoretic approach to the evaluation of machine learning algorithms in computational drug discovery

Abstract:

Motivation: Artificial intelligence, trained via machine learning (e.g. neural nets, random forests) or computational statistical algorithms (e.g. support vector machines, ridge regression), holds much promise for the improvement of small-molecule drug discovery. However, small-molecule structure-activity data are high dimensional with low signal-to-noise ratios and proper validation of predictive methods is difficult. It is poorly understood which, if any, of the currently available machine learning algorithms will best predict new candidate drugs.

Results: The quantile-activity bootstrap is proposed as a new model validation framework using quantile splits on the activity distribution function to construct training and testing sets. In addition, we propose two novel rank-based loss functions which penalize only the out-of-sample predicted ranks of high-activity molecules. The combination of these methods was used to assess the performance of neural nets, random forests, support vector machines (regression) and ridge regression applied to 25 diverse high-quality structure-activity datasets publicly available on ChEMBL. Model validation based on random partitioning of available data favours models that overfit and ‘memorize’ the training set, namely random forests and deep neural nets. Partitioning based on quantiles of the activity distribution correctly penalizes extrapolation of models onto structurally different molecules outside of the training data. Simpler, traditional statistical methods such as ridge regression can outperform state-of-the-art machine learning methods in this setting. In addition, our new rank-based loss functions give considerably different results from mean squared error highlighting the necessity to define model optimality with respect to the decision task at hand.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.1093/bioinformatics/btz293

Authors


More by this author
Institution:
University of Oxford
Division:
MSD
Department:
NDM
Sub department:
Tropical Medicine
Role:
Author
ORCID:
0000-0001-5524-0325


Publisher:
Oxford University Press
Journal:
Bioinformatics More from this journal
Volume:
35
Issue:
22
Pages:
4656–4663
Publication date:
2019-05-09
Acceptance date:
2019-04-17
DOI:
EISSN:
1367-4811
ISSN:
1367-4803
Pmid:
31070704


Language:
English
Keywords:
Pubs id:
pubs:1000241
UUID:
uuid:c99ea398-0009-4a3f-aec8-6ff01e88f303
Local pid:
pubs:1000241
Source identifiers:
1000241
Deposit date:
2019-05-24

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP