Journal article
Automated assessment reveals that the extinction risk of reptiles is widely underestimated across space and phylogeny
- Abstract:
- The Red List of Threatened Species, published by the International Union for Conservation of Nature (IUCN), is a crucial tool for conservation decision-making. However, despite substantial effort, numerous species remain unassessed or have insufficient data available to be assigned a Red List extinction risk category. Moreover, the Red Listing process is subject to various sources of uncertainty and bias. The development of robust automated assessment methods could serve as an efficient and highly useful tool to accelerate the assessment process and offer provisional assessments. Here, we aimed to (1) present a machine learning-based automated extinction risk assessment method that can be used on less known species; (2) offer provisional assessments for all reptiles-the only major tetrapod group without a comprehensive Red List assessment; and (3) evaluate potential effects of human decision biases on the outcome of assessments. We use the method presented here to assess 4,369 reptile species that are currently unassessed or classified as Data Deficient by the IUCN. The models used in our predictions were 90% accurate in classifying species as threatened/nonthreatened, and 84% accurate in predicting specific extinction risk categories. Unassessed and Data Deficient reptiles were considerably more likely to be threatened than assessed species, adding to mounting evidence that these species warrant more conservation attention. The overall proportion of threatened species greatly increased when we included our provisional assessments. Assessor identities strongly affected prediction outcomes, suggesting that assessor effects need to be carefully considered in extinction risk assessments. Regions and taxa we identified as likely to be more threatened should be given increased attention in new assessments and conservation planning. Lastly, the method we present here can be easily implemented to help bridge the assessment gap for other less known taxa.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 2.1MB, Terms of use)
-
- Publisher copy:
- 10.1371/journal.pbio.3001544
Authors
+ Israel Science Foundation
More from this funder
- Funder identifier:
- https://ror.org/04sazxf24
- Grant:
- 406/19
- Publisher:
- Public Library of Science
- Journal:
- PLoS Biology More from this journal
- Volume:
- 20
- Issue:
- 5
- Article number:
- e3001544
- Place of publication:
- United States
- Publication date:
- 2022-05-26
- Acceptance date:
- 2022-04-21
- DOI:
- EISSN:
-
1545-7885
- ISSN:
-
1544-9173
- Pmid:
-
35617356
- Language:
-
English
- Pubs id:
-
1261964
- Local pid:
-
pubs:1261964
- Deposit date:
-
2025-03-11
Terms of use
- Copyright holder:
- Caetano et al
- Copyright date:
- 2022
- Rights statement:
- © 2022 Caetano et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record