Journal article icon

Journal article

Detection of CH3C3N in Titan's atmosphere

Abstract:
Titan harbors a dense, organic-rich atmosphere primarily composed of N2 and CH4, with lesser amounts of hydrocarbons and nitrogen-bearing species. As a result of high-sensitivity observations by the Atacama Large Millimeter/submillimeter Array (ALMA) in Band 6 (∼230–272 GHz), we obtained the first spectroscopic detection of CH3C3N (methylcyanoacetylene or cyanopropyne) in Titan's atmosphere through the observation of seven transitions in the $J=64\to 63$ and $J=62\to 61$ rotational bands. The presence of CH3C3N on Titan was suggested by the Cassini Ion and Neutral Mass Spectrometer detection of its protonated form: C4H3NH+, but the atmospheric abundance of the associated (deprotonated) neutral product is not well constrained due to the lack of appropriate laboratory reaction data. Here, we derive the column density of CH3C3N to be (3.8–5.7) × 1012 cm−2 based on radiative transfer models sensitive to altitudes above 400 km Titan's middle atmosphere. When compared with laboratory and photochemical model results, the detection of methylcyanoacetylene provides important constraints for the determination of the associated production pathways (such as those involving CN, CCN, and hydrocarbons), and reaction rate coefficients. These results also further demonstrate the importance of ALMA and (sub)millimeter spectroscopy for future investigations of Titan's organic inventory and atmospheric chemistry, as CH3C3N marks the heaviest polar molecule detected spectroscopically in Titan's atmosphere to date.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Publisher copy:
10.3847/2041-8213/abc1e1

Authors


More by this author
Role:
Author
ORCID:
0000-0002-8178-1042
More by this author
Role:
Author
ORCID:
0000-0001-8233-2436
More by this author
Role:
Author
ORCID:
0000-0001-9540-9121
More by this author
Role:
Author
ORCID:
0000-0001-7273-1898
More by this author
Role:
Author
ORCID:
0000-0002-2570-3154


Publisher:
IOP Publishing
Journal:
Astrophysical Journal Letters More from this journal
Volume:
903
Issue:
1
Article number:
L22
Publication date:
2020-11-02
Acceptance date:
2020-10-15
DOI:
EISSN:
2041-8213
ISSN:
2041-8205

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP