Journal article
Convection modeling of pure-steam atmospheres
- Abstract:
- Condensable species are crucial to shaping planetary climate. A wide range of planetary climate systems involve understanding nondilute condensable substances and their influence on climate dynamics. There has been progress on large-scale dynamical effects and on 1D convection parameterization, but resolved 3D moist convection remains unexplored in nondilute conditions, though it can have a profound impact on temperature/humidity profiles and cloud structure. In this work, we tackle this problem for pure-steam atmospheres using three-dimensional, high-resolution numerical simulations of convection in postrunaway atmospheres. We show that the atmosphere is composed of two characteristic regions, an upper condensing region dominated by gravity waves and a lower noncondensing region characterized by convective overturning cells. Velocities in the condensing region are much smaller than those in the lower, noncondensing region, and the horizontal temperature variation is small. Condensation in the thermal photosphere is largely driven by radiative cooling and tends to be statistically homogeneous. Some condensation also happens deeper, near the boundary of the condensing region, due to triggering by gravity waves and convective penetrations and exhibits random patchiness. This qualitative structure is insensitive to varying model parameters, but quantitative details may differ. Our results confirm theoretical expectations that atmospheres close to the pure-steam limit do not have organized deep convective plumes in the condensing region. The generalized convective parameterization scheme discussed in Ding & Pierrehumbert is appropriate for handling the basic structure of atmospheres near the pure-steam limit but cannot capture gravity waves and their mixing which appear in 3D convection-resolving models.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, 1.0MB, Terms of use)
-
- Publisher copy:
- 10.3847/2041-8213/ac3e69
Authors
- Publisher:
- American Astronomical Society
- Journal:
- Astrophysical Journal Letters More from this journal
- Volume:
- 923
- Issue:
- 1
- Article number:
- L15
- Publication date:
- 2021-12-13
- Acceptance date:
- 2021-11-29
- DOI:
- EISSN:
-
2041-8213
- ISSN:
-
2041-8205
- Language:
-
English
- Keywords:
- Pubs id:
-
1224905
- Local pid:
-
pubs:1224905
- Deposit date:
-
2022-03-05
Terms of use
- Copyright holder:
- Tan et al
- Copyright date:
- 2021
- Rights statement:
- © 2021. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record