Journal article icon

Journal article

Exploiting rotational asymmetry for sub-50 nm mechanical nanocalligraphy

Abstract:
Nanofabrication has experienced extraordinary progress in the area of lithography-led processes over the last decades, although versatile and adaptable techniques addressing a wide spectrum of materials are still nascent. Scanning probe lithography (SPL) offers the capability to readily pattern sub-100 nm structures on many surfaces; however, the technique does not scale to dense and multi-lengthscale structures. Here, we demonstrate a technique, which we term nanocalligraphy scanning probe lithography (nc-SPL), that overcomes these limitations. Nc-SPL employs an asymmetric tip and exploits its rotational asymmetry to generate structures spanning the micron to nanometer lengthscales through real-time linewidth tuning. Using specialized tip geometries and by precisely controlling the patterning direction, we demonstrate sub-50 nm patterns while simultaneously improving on throughput, tip longevity, and reliability compared to conventional SPL. We further show that nc-SPL can be employed in both positive and negative tone patterning modes, in contrast to conventional SPL. This underlines the potential of this technique for processing sensitive surfaces such as 2D materials, which are prone to tip-induced shear or beam-induced damage.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Publisher copy:
10.1038/s41378-021-00300-y

Authors


More by this author
Role:
Author
ORCID:
0000-0003-2886-8701


Publisher:
Springer Nature
Journal:
Microsystems and Nanoengineering More from this journal
Volume:
7
Article number:
84
Publication date:
2021-10-20
Acceptance date:
2021-06-04
DOI:
EISSN:
2055-7434


Language:
English
Keywords:
Pubs id:
1204278
Local pid:
pubs:1204278
Deposit date:
2021-10-20

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP