Journal article icon

Journal article

Anisotropic magnetic switching along hard [110]-type axes in Er-doped DyFe 2 /YFe 2 thin films

Abstract:
Epitaxial-grown DyFe2/YFe2 multilayer thin films form an ideal model system for the study of magnetic exchange springs. Here the DyFe2 (YFe2) layers are magnetically hard (soft). In the presence of a magnetic field, exchange springs form in the YFe2 layers. Recently, it has been demonstrated that placing small amounts of Er into the centre of the YFe2 springs generates substantial changes in magnetic behavior. In particular, (i) the number of exchange-spring states is increased dramatically, (ii) the resulting domain-wall states cannot simply be described as either Néel or Bloch walls, (iii) the Er and Dy magnetic loops are strikingly different, and (iv) it is possible to engineer Er-induced magnetic exchange-spring collapse. Here, results are presented for Er-doped (110)-oriented DyFe2 (60 Å/YFe2(240 Å)15 multilayer films, at 100 K in fields of up to 12 T. In particular, we contrast magnetic loops for fields applied along seemingly equivalent hard-magnetic [110]-type axes. MBE-grown cubic Laves thin films offer the unique feature of allowing to apply the magnetic field along (i) a hard out-of-plane [110]-axis (the growth axis) and (ii) a similar hard in-plane [110]-axis. Differences are found and attributed to the competition between the crystal-field interaction at the Er site and the long-range dipole-dipole interaction. In particular, the out-of-plane [110] Er results show the existence of a new magnetic exchange spring state, which would be very difficult to identify without the aid of element-specific technique of X-ray magnetic circular dichroism (XMCD).
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.1016/j.jmmm.2017.05.007

Authors



Publisher:
Elsevier
Journal:
Journal of Magnetism and Magnetic Materials More from this journal
Volume:
439
Pages:
287–293
Publication date:
2017-05-08
Acceptance date:
2017-05-04
DOI:
ISSN:
0304-8853


Keywords:
Pubs id:
pubs:696525
UUID:
uuid:bf593e72-9e30-4f61-bcfd-76336d252a9d
Local pid:
pubs:696525
Source identifiers:
696525
Deposit date:
2017-05-19

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP