Journal article
TRPML2 in distinct states reveals the activation and modulation principles of the TRPML family
- Abstract:
- TRPML2 activity is critical for endolysosomal integrity and chemokine secretion, and can be modulated by various ligands. Interestingly, two ML-SI3 isomers regulate TRPML2 oppositely. The molecular mechanism underlying this unique isomeric preference as well as the TRPML2 agonistic mechanism remains unknown. Here, we present six cryo-EM structures of human TRPML2 in distinct states revealing that the π-bulge of the S6 undergoes a π-α transition upon agonist binding, highlighting the remarkable role of the π-bulge in ion channel regulation. Moreover, we identify that PI(3,5)P2 allosterically affects the pose of ML2-SA1, a TRPML2 specific activator, resulting in an open channel without the π-α transition. Functional and structural studies show that mutating the S5 of TRPML1 to that of TRPML2 enables the mutated TRPML1 to be activated by (+)ML-SI3 and ML2-SA1. Thus, our work elucidates the activation mechanism of TRPML channels and paves the way for the development of selective TRPML modulators.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 3.6MB, Terms of use)
-
(Supplementary materials, zip, 28.5MB, Terms of use)
-
- Publisher copy:
- 10.1038/s41467-025-60710-8
Authors
- Publisher:
- Nature Research
- Journal:
- Nature Communications More from this journal
- Volume:
- 16
- Issue:
- 1
- Article number:
- 5325
- Publication date:
- 2025-06-17
- Acceptance date:
- 2025-06-02
- DOI:
- EISSN:
-
2041-1723
- ISSN:
-
2041-1723
- Language:
-
English
- Source identifiers:
-
3034366
- Deposit date:
-
2025-06-18
This ORA record was generated from metadata provided by an external service. It has not been edited by the ORA Team.
If you are the owner of this record, you can report an update to it here: Report update to this record