Journal article icon

Journal article

Receptor structure-based discovery of non-metabolite agonists for the succinate receptor GPR91

Abstract:
Besides functioning as an intracellular metabolite, succinate acts as a stress-induced extracellular signal through activation of GPR91 (SUCNR1) for which we lack suitable pharmacological tools.Here we first determined that the cis conformation of the succinate backbone is preferred and that certain backbone modifications are allowed for GPR91 activation. Through receptor modeling over the X-ray structure of the closely related P2Y1 receptor, we discovered that the binding pocket is partly occupied by a segment of an extracellular loop and that succinate therefore binds in a very different mode than generally believed. Importantly, an empty side-pocket is identified next to the succinate binding site. All this information formed the basis for a substructure-based search query, which, combined with molecular docking, was used in virtual screening of the ZINC database to pick two serial mini-libraries of a total of only 245 compounds from which sub-micromolar, selective GPR91 agonists of unique structures were identified. The best compounds were backbone-modified succinate analogs in which an amide-linked hydrophobic moiety docked into the side-pocket next to succinate as shown by both loss- and gain-of-function mutagenesis. These compounds displayed GPR91-dependent activity in altering cytokine expression in human M2 macrophages similar to succinate, and importantly were devoid of any effect on the major intracellular target, succinate dehydrogenase.These novel, synthetic non-metabolite GPR91 agonists will be valuable both as pharmacological tools to delineate the GPR91-mediated functions of succinate and as leads for the development of GPR91-targeted drugs to potentially treat low grade metabolic inflammation and diabetic complications such as retinopathy and nephropathy.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.1016/j.molmet.2017.09.005

Authors


More by this author
Role:
Author
ORCID:
0000-0002-6908-106X
More by this author
Role:
Author
ORCID:
0000-0003-1243-7587
More by this author
Role:
Author
ORCID:
0000-0002-6470-650X
More by this author
Institution:
University of Oxford
Division:
MSD
Department:
NDORMS
Sub department:
Kennedy Institute for Rheumatology
Role:
Author


Publisher:
Elsevier
Journal:
Molecular Metabolism More from this journal
Volume:
6
Issue:
12
Pages:
1585-1596
Publication date:
2017-09-30
Acceptance date:
2017-09-25
DOI:
ISSN:
2212-8778
Pmid:
29157600


Language:
English
Keywords:
Pubs id:
pubs:738921
UUID:
uuid:bdb4a1f4-d10c-4191-a987-8f63376d3cf8
Local pid:
pubs:738921
Source identifiers:
738921
Deposit date:
2018-06-12

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP