Journal article
Endothelium-specific GTP cyclohydrolase I overexpression attenuates blood pressure progression in salt-sensitive low-renin hypertension.
- Abstract:
- BACKGROUND: Tetrahydrobiopterin (BH4) is an essential cofactor of endothelial nitric oxide synthase (eNOS). When BH4 levels are decreased, eNOS becomes uncoupled to produce superoxide anion (O2(-)) instead of NO, which contributes to endothelial dysfunction. Deoxycorticosterone acetate (DOCA)-salt hypertension is characterized by a suppressed plasma renin level due to sodium retention but manifests in eNOS uncoupling; however, how endogenous BH4 regulates blood pressure is unknown. GTP cyclohydrolase I (GTPCH I) is the rate-limiting enzyme for de novo BH4 synthesis. This study tested the hypothesis that endothelium-specific GTPCH I overexpression retards the progression of hypertension through preservation of the structure and function of resistance mesenteric arteries. METHODS AND RESULTS: During 3 weeks of DOCA-salt treatment, arterial blood pressure was increased significantly in wild-type mice, as determined by radiotelemetry, but this increase was attenuated in transgenic mice with endothelium-specific GTPCH I overexpression (Tg-GCH). Arterial GTPCH I activity and BH4 levels were decreased significantly in wild-type DOCA-salt mice, but both were preserved in Tg-GCH mice despite DOCA-salt treatment. Significant remodeling of resistance mesenteric arteries (approximately 100-microm outside diameter) in wild-type DOCA-salt mice exists, evidenced by increased medial cross-sectional area, media thickness, and media-lumen ratio and overexpression of tenascin C, an extracellular matrix glycoprotein that contributes to hypertrophic remodeling; all of these effects were prevented in DOCA-salt-treated Tg-GCH mice. Furthermore, NO-mediated relaxation in mesenteric arteries was significantly improved in DOCA-salt-treated Tg-GCH mice, in parallel with reduced O2(-) levels. Finally, phosphorylation of eNOS at serine residue 1177 (eNOS-S1177), but not its dimer-monomer ratio, was decreased significantly in wild-type DOCA-salt mice compared with sham controls but was preserved in DOCA-salt-treated Tg-GCH mice. CONCLUSIONS: These results demonstrate that endothelium-specific GTPCH I overexpression abrogates O2(-) production and preserves eNOS phosphorylation, which results in preserved structural and functional integrity of resistance mesenteric arteries and lowered blood pressure in low-renin hypertension.
- Publication status:
- Published
Actions
Authors
- Journal:
- Circulation More from this journal
- Volume:
- 117
- Issue:
- 8
- Pages:
- 1045-1054
- Publication date:
- 2008-02-01
- DOI:
- EISSN:
-
1524-4539
- ISSN:
-
0009-7322
- Language:
-
English
- Keywords:
-
- Pubs id:
-
pubs:105086
- UUID:
-
uuid:bba95944-af00-440a-8413-392b68296f56
- Local pid:
-
pubs:105086
- Source identifiers:
-
105086
- Deposit date:
-
2012-12-19
Terms of use
- Copyright date:
- 2008
If you are the owner of this record, you can report an update to it here: Report update to this record