Thesis icon

Thesis

Human cardiac magnetic resonance spectroscopy

Alternative title:
Human cardiac phosphorus MRS at 7T
Abstract:

The status of the myocardial “high energy phosphate” metabolism is a sensitive marker of the occurrence and progression of heart failure. Magnetic resonance spectroscopy enables non-invasive, direct and potentially quantitative measurements of the phosphate containing metabolites present in the human myocardium. This thesis is primarily concerned with the creation of measurement techniques for cardiac phosphorus magnetic resonance spectroscopy (31P-MRS) at the 7 tesla field strength.

  • Chapter 1 provides an overview of the physical basis of magnetic resonance spectroscopy, the myocardial high energy phosphate metabolism, and the clinical relevance of the technique.
  • Chapter 2 describes the advantage of 7 tesla scanners over lower field strengths. The radio frequency coil hardware is characterised experimentally. The multivoxel spectroscopy methods used throughout the thesis are described.
  • Chapter 3 details the implementation of an open source spectroscopy fitting program. It is validated against previous closed-source implementations. The program’s use is demonstrated in several clinical studies of heart failure, and to improve a previously implemented 1H spectroscopy coil combination method.
  • In Chapter 4 the measurement of inorganic phosphate in the presence of overlapping peaks is attempted. Suppression of overlapping peaks, originating from the blood, is tried using Bo gradients, then saturation transfer. The myocardial pH of hypertrophic cardiomyopathy patients is measured.
  • Chapter 5 describes the effect of creatine kinase catalysed chemical exchange on the 31P-MRS spectrum. A survey of methods suitable for measuring creatine kinase kinetics at 7 tesla is made. Multi-parametric fitting of variable repetition time saturation transfer data is explored in simulation and experiment.
  • Chapter 6 describes the re-implementation and extension, for dynamic measurements, of the triple repetition time saturation transfer method for two clinical studies at 3 tesla. The creatine kinase forward rate constant is measured in heart failure and healthy cohorts, at rest, and during cardiac stress.
  • In Chapter 7 a Bloch-Siegert B1 mapping sequence is implemented for 31P-MRS. An optimal Bloch-Siegert method for X-nuclear spectroscopy is calculated. B1maps are validated in skeletal muscle and collected in 5 volunteer’s hearts.
  • Chapter 8 uses the Bloch-Siegert B1 mapping sequence and the four angle saturation transfer method to implement creatine kinase rate measurement at 7 tesla. The first 3D localised creatine kinase rate measurements in the human myocardium are achieved in 10 volunteers.

Actions


Access Document


Authors


More by this author
Institution:
University of Oxford
Division:
MSD
Department:
Clinical Neurosciences
Role:
Author

Contributors

Institution:
University of Oxford
Division:
MSD
Department:
RDM
Sub department:
RDM Cardiovascular Medicine
Role:
Supervisor
Institution:
University of Oxford
Division:
MSD
Department:
RDM
Sub department:
RDM Cardiovascular Medicine
Role:
Supervisor


Type of award:
DPhil
Level of award:
Doctoral
Awarding institution:
University of Oxford


Language:
English
Keywords:
Subjects:
UUID:
uuid:b75351dc-e4eb-4856-b901-4ba486ffe175
Deposit date:
2017-03-26

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP