Journal article
Extending the generalised Pareto distribution for novelty detection in high-dimensional spaces
- Abstract:
- Novelty detection involves the construction of a “model of normality”, and then classifies test data as being either “normal” or “abnormal” with respect to that model. For this reason, it is often termed one-class classification. The approach is suitable for cases in which examples of “normal” behaviour are commonly available, but in which cases of “abnormal” data are comparatively rare. When performing novelty detection, we are typically most interested in the tails of the normal model, because it is in these tails that a decision boundary between “normal” and “abnormal” areas of data space usually lies. Extreme value statistics provides an appropriate theoretical framework for modelling the tails of univariate (or low-dimensional) distributions, using the generalised Pareto distribution (GPD), which can be demonstrated to be the limiting distribution for data occurring within the tails of most practically-encountered probability distributions. This paper provides an extension of the GPD, allowing the modelling of probability distributions of arbitrarily high dimension, such as occurs when using complex, multimodel, multivariate distributions for performing novelty detection in most real-life cases. We demonstrate our extension to the GPD using examples from patient physiological monitoring, in which we have acquired data from hospital patients in large clinical studies of high-acuity wards, and in which we wish to determine “abnormal” patient data, such that early warning of patient physiological deterioration may be provided.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 1.1MB, Terms of use)
-
- Publisher copy:
- 10.1007/s11265-013-0835-2
Authors
- Publisher:
- Springer US
- Journal:
- Journal of signal processing systems More from this journal
- Volume:
- 74
- Issue:
- 3
- Pages:
- 323-339
- Publication date:
- 2013-08-16
- DOI:
- EISSN:
-
1939-8115
- ISSN:
-
1939-8018
- Language:
-
English
- Keywords:
- Pubs id:
-
pubs:419052
- UUID:
-
uuid:b53e6e39-a626-4ade-a13e-dfd749c566e5
- Local pid:
-
pubs:419052
- Source identifiers:
-
419052
- Deposit date:
-
2013-11-17
Terms of use
- Copyright holder:
- Clifton et al
- Copyright date:
- 2013
- Notes:
- Copyright The Authors. 2013. This article is published with open access at Springerlink.com.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record