Journal article icon

Journal article

2D auxetic metamaterials with tuneable micro-/nanoscale apertures

Abstract:
Modern advanced manufacturing technologies have made possible the tailored design and fabrication of complex nanoscale architectures with anomalous and enhanced properties, including mechanical and optical metamaterials; structured materials which are able to exhibit unusual mechanical and optical properties that are derived from their geometry rather than their intrinsic material properties. In this work, we fabricated for the first time an ultrathin 2D auxetic metamaterial with nanoscale geometric features specifically designed to deform in-plane by using focused-ion-beam milling to introduce patterned nano-slits within a thin membrane. The system was mechanically loaded in-situ and exhibited in-plane dominated deformation up to 5% tensile strain and a Poisson's ratio of −0.78. Furthermore, the porosity and aperture shape of the metamaterial have been shown to change considerably upon the application of strain, with pore dimensions showing a fourfold increase at 5% strain. This mechanically-controlled tuneability makes this metamaterial system an ideal candidate for use as a reconfigurable nano-filter or a nano light-modulator.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.1016/j.apmt.2020.100780

Authors


More by this author
Division:
MPLS
Department:
Engineering Science
Role:
Author
ORCID:
0000-0002-5770-408X


Publisher:
Elsevier
Journal:
Applied Materials Today More from this journal
Volume:
20
Article number:
100780
Publication date:
2020-08-06
Acceptance date:
2020-07-29
DOI:
ISSN:
2352-9407


Language:
English
Keywords:
Pubs id:
1124710
Local pid:
pubs:1124710
Deposit date:
2020-08-09

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP