Journal article
Climate impacts of cultured meat and beef cattle
- Abstract:
- Improved greenhouse gas (GHG) emission efficiency of production has been proposed as one of the biggest potential advantages of cultured meat over conventional livestock production systems. Comparisons with beef are typically highlighted, as it is a highly emissions intensive food product. In this study, we present a more rigorous comparison of the potential climate impacts of cultured meat and cattle production than has previously been made. Warming impacts are evaluated using a simple climate model that simulates the different behaviors of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), rather than relying on carbon dioxide equivalent (CO2e) metrics. We compare the temperature impact of beef cattle and cultured meat production at all times to 1,000 years in the future, using four synthetic meat GHG footprints currently available in the literature and three different beef production systems studied in an earlier climate modeling paper. Cattle systems are associated with the production of all three GHGs above, including significant emissions of CH4, while cultured meat emissions are almost entirely CO2 from energy generation. Under continuous high global consumption, cultured meat results in less warming than cattle initially, but this gap narrows in the long term and in some cases cattle production causes far less warming, as CH4 emissions do not accumulate, unlike CO2. We then model a decline in meat consumption to more sustainable levels following high consumption, and show that although cattle systems generally result in greater peak warming than cultured meat, the warming effect declines and stabilizes under the new emission rates of cattle systems, while the CO2 based warming from cultured meat persists and accumulates even under reduced consumption, again overtaking cattle production in some scenarios. We conclude that cultured meat is not prima facie climatically superior to cattle; its relative impact instead depends on the availability of decarbonized energy generation and the specific production systems that are realized.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 2.7MB, Terms of use)
-
- Publisher copy:
- 10.3389/fsufs.2019.00005
Authors
- Publisher:
- Frontiers Media
- Journal:
- Frontiers in Sustainable Food Systems More from this journal
- Volume:
- 3
- Article number:
- 5
- Publication date:
- 2019-02-19
- Acceptance date:
- 2019-01-24
- DOI:
- ISSN:
-
2571-581X
- Keywords:
- Pubs id:
-
pubs:967164
- UUID:
-
uuid:b2509529-0186-4396-8b71-d8aef6707403
- Local pid:
-
pubs:967164
- Source identifiers:
-
967164
- Deposit date:
-
2019-01-31
Terms of use
- Copyright holder:
- Lynch and Pierrehumber
- Copyright date:
- 2019
- Notes:
- Copyright © 2019 Lynch and Pierrehumbert. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record