Journal article icon

Journal article

Phosphatidylinositol 4,5-bisphosphate clusters act as molecular beacons for vesicle recruitment

Abstract:
Synaptic-vesicle exocytosis is mediated by the vesicular Ca 2+ sensor synaptotagmin-1. Synaptotagmin-1 interacts with the SNARE protein syntaxin-1A and acidic phospholipids such as phosphatidylinositol 4,5-bisphosphate (PIP2). However, it is unclear how these interactions contribute to triggering membrane fusion. Using PC12 cells from Rattus norvegicus and artificial supported bilayers, we show that synaptotagmin-1 interacts with the polybasic linker region of syntaxin-1A independent of Ca 2+ through PIP2. This interaction allows both Ca 2+ -binding sites of synaptotagmin-1 to bind to phosphatidylserine in the vesicle membrane upon Ca 2+ triggering. We determined the crystal structure of the C2B domain of synaptotagmin-1 bound to phosphoserine, allowing development of a high-resolution model of synaptotagmin bridging two different membranes. Our results suggest that PIP2 clusters organized by syntaxin-1 act as molecular beacons for vesicle docking, with the subsequent Ca 2+ influx bringing the vesicle membrane close enough for membrane fusion. © 2013 Nature America, Inc. All rights reserved.

Actions


Access Document


Publisher copy:
10.1038/nsmb.2570

Authors



Journal:
Nature Structural and Molecular Biology More from this journal
Volume:
20
Issue:
6
Pages:
679-686
Publication date:
2013-06-01
DOI:
EISSN:
1545-9985
ISSN:
1545-9993


Language:
English
Pubs id:
pubs:410095
UUID:
uuid:acfa1598-64ea-4adc-be2e-da9f42417a17
Local pid:
pubs:410095
Source identifiers:
410095
Deposit date:
2013-11-16

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP